

2ª

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi Approved by AJ.C.T.E. New Delhi. Recognised by UGC Under Section 2(7) Bornmanahalli, Hosur Road, Bangakore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 E-mail: engptincipal@thecxford.edu: Web: www.thecxford.engg.org

Details of books and chapters in edited volumes/books published and papers published in national/ international conference proceedings

	Index	
SL. No.	Particulars	Page No.
1.	Summary	2
2.	Books and chapters in edited volumes/books published and papers published in national/ international conference proceedings 2016-2017	3-74
3.	Books and chapters in edited volumes/books published and papers published in national/ international conference proceedings 2017-2018	75 - 108
4.	Books and chapters in edited volumes/books published and papers published in national/ international conference proceedings 2018-2019	109 - 118
5.	Books and chapters in edited volumes/books published and papers published in national/ international conference proceedings 2019-2020	119 - 134
6.	Books and chapters in edited volumes/books published and papers published in national/ international conference proceedings 2020-2021	135- 154

PRINCIPAL The Oxford College of Engineering Bommanahalli, Hosur Road Bengaluru-560 068

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING (Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bornmanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 E-mall: engprincipal@theoxford.edu Web: www.theoxfordengg.org

Summary

In last 5 Academic Year, the faculty of The Oxford College of Engineering has presented 34 papers in international conferences. There are total 7 books published last 5 academic years.

SI. No	Academic Year	Confe	erences	Book
		National	International	
1	2016-17	0	13	5
2	2017-18	0	4	1
3	2018-19	0	4	0
4	2019-20	0	5	0
5	2020-21	0	8	1
	Total	34		7

PRINCIPAL The Oxford College of Engineering Bommanahalli, Hosur Road Bengaluru-560 068

			arment (CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING sed by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org							
SLNO	Name of the teacher	Title of the book/chapters published	Title of the paper	Title of the proceedings of the conference	Name of the conference	National / Internation al	Year of public ation	ISBN/IS SN number of the proceedi ng	Affiliating Institute at the time of publication	Name of the publisher	
1	Dr. Preethasharan	Digital Communicatio n Lab Manual					2016		The Oxford College of Engineering, Bangalore	CBS, Publications, Delhi.	
2	R.Bhargava Rama Gowd		Real Time Implementation of Multimedia Traffic Unicast and Multicast groups using Optical Network	Advanced Communication, Control& Computing Technologies	ICACCCT	International	2016	I978-1- 4673- 9544-1	The Oxford College of Engineering, Bangalore	Syed Ammal Engineering college, Ramanathpura m,Tamilnadu.	
3	Gunjan Thakur Vemana Institute of Technology, Bangalore, Karnataka ,Preeta Sharan; Mrinal Sarvagya		A digital Cross Connect (DCS) switch for multicast and broadcast traffic	2016 IEEE Annual India Conference (INDICON)	INDICON	International	2016	2325- 9418	The Oxford College of Engineering	IEEE Explorer	
4	Indira Bahaddur, P.C. Srikanth, and Preetha Sharan		Photonic crystal nano cavity pressure sensor	13th International Conference on Fiber Optics and Photonics		International	2016	978-1- 943580- 22-4	The Oxford College of Engineering	Optical Society of America	

		(Recogni	THE OXFC ised by the Govt. of Ka R Bomn Ph:	rnataka, Affiliated to Approved by A.I. lecognised by UGC nanahalli, Hosur Ro : 080-61754601/602	C.T.E. New Delh Under Section ad, Bangalore - R. Fax: 080 - 25	ENGINEERING araya Technological University, Belagavi. ew Delhi. Section 2(f) galore - 560 068. 80 - 25730551 www.theoxfordengg.org				
5	Gunjan Thakur; Ambika Gumpe; Mrinal Sarvagya; Preeta Sharan	An area efficient multiplexer for crossbar arbiter design using quantum dot cellular automata	2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)	RTEICT	International	2016	978-1- 5090- 0774-5	The Oxford College of Engineering	IEEE Explorer	
6	Savitha; K. Srinivas Rao; Preeta Sharan	Detection of oncological cell for breast cancer by using SPR technology	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College of Engineering	IEEE Explorer	
7	Gunjan Thakur Vemana; Mrinal Sarvagya; Preeta Sharan	Wireless digital cross connects SOC for optical networks using FPGA	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College of Engineering	IEEE Explorer	
8	H. A. Navyashree; Pre eta Sharan	An optical storage device by surface plasmon resonance	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College of Engineering	IEEE Explorer	
9	S.K. Pratibha; T.N. Vinay	An efficient design of QCA based memory	2016 3rd International Conference on Computing for	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College of Engineering	IEEE Explorer	

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

	Kumar; Preeta Sharan		Sustainable Global Development (INDIACom)						
10	Samyukta A Hassan; Preeta Sharan	Low power quantum gates for the implementation of reversible memory elements using quantum dot cellular automata	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College ofEngineering	IEEE Explorer
11	Sandip Kumar Roy; M Harshitha; Preet a Sharan	A comparative study of saline and non-saline water in application of tomato yield by using photonic sensor	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2016	International	2016	978-9- 3805- 4421-2	The Oxford College ofEngineering	IEEE Explorer
12	Indira Bahaddur; P C Srikanth; Preeta Sharan	A photonic crystal based pressure sensor	2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)	ICEEOT 2016	International	2016	978-1- 4673- 9939-5	The Oxford College ofEngineering	IEEE Explorer
13	Mrs.Nisha c Rani	Modular phaseDC-DC converter with soft switching high frequency isolation			National	2016	ISSN (Online): 2347 - 2812	The Oxford College of Engineering, Bangalore	<u>IJRAET</u>
14	Dr.B.K.Manjun atha and Divakara R	Propyl 4-(3-oxo- 1,3-dihydro-2H- benzo[g]indazol- 2-yl) benzoate an novel bioactive	Proceedings of the 10th INDIA Com-2016, 16th - 18th march 2016, ISSN:0973-7529	Indiacom	International	2016		The Oxford College ofEngineering	INDIAOM

			(Recogni	THE OXFO sed by the Govt. of Kar Ra Bomm Ph:	EN'S EDUCATI RD COLLEG nataka, Affiliated to Approved by A.I. ecognised by UGC anahalli, Hosur Ro 080-61754601/602, acipal@theoxford.ed	E OF ENG Visvesvaraya Tec C.T.E. New Delh Under Section ad, Bangalore - , Fax: 080 - 253	INEER hnologica i. 2(f) 560 068 730551	University, B	elagavi.	
			compound from Streptomyces species, RHC-1, isolated from soil of Western Ghats, Karnataka, India							
15	Prof A.Sahana	Transforming management education for sustainable tomarrow	A competency model for determining the profile of b- school faculty in bangalore				2016		The Oxford College of Engineering, Bangalore	AIMA
16	Dr.James Thomas	Innovation in marketing, E Commerce ,information technology and banking (IMEIB-2016)	Innovation in marketing, E Commerce ,information technology and banking (IMEIB-2016)	Business sustainability		International conference	2016	ISSN :0254- 8755	The Oxford College of Engineering, Bangalore	IMEIB2016
17	P.Chandrika reddy	Thakur Publications	Managerial communication				2016	ISBN:97 8-93- 86232- 83-0	The Oxford College of Engineering	Thakur Publications
18	Dr. M S Shashidhara	Data warehousing and Data Mining					2016		The Oxford College of Engineering	Thakur Publications

1/30/2021 Advanced Digital Communication Laboratory Manual (Pb 2013): Preeta Sharan / R.Bhargava Rama Gowd: 9788123922683: Amazon.co... 0 Deliver to ANUP Hello, An... Returns Books 🔻 Bengaluru 560061 Account -& Orders Amazon's response to COVID-19 Browsing History -All Today's Deals Anup's Amazon.com **Customer Service** Buy Again Gift Cards Advanced Search Best Sellers & More Children's Books Best Books of the Month Books New Releases Textbooks Textbook Rentals Magazines **Advanced Digital** INR 928.37 Advanced Communication **Digital Communication** Your selected delivery location is Laboratory Manual (Pb beyond seller's shipping coverage Laboratory Manual for this item. Please choose a 2013) Paperback – January 1, different delivery location or purchase from another seller. 2013 Add to Cart by Preeta Sharan / R.Bhargava Rama Gowd (Author) 1 rating Deliver to ANUP - Bengaluru 560061 Preeta Sharan naraava Rama Gowd See all formats and editions Share Paperback INR 928.37 **Other Sellers on Amazon** 3 Used from INR 625.46 Add to Cart INR 1,538.72 11 New from INR 250.79 Sold by: EMC_STORE INR 1.992.71 Add to Cart This book is designed for the Mtech students of Sold by: Dutchess Collection Digital Electronics and Communication as well as Digital Communication and Networking courses.It INR 250.79 Add to Cart See this image gives relevant information on the basic concepts of Sold by: Books_Vallue processes circuits and other building blocks of experiments related to digital communication. It Have one to sell? presents the basic concept used in circuit Sell on Amazon Report incorrect product information. amazon book clubs Print length Language early access Add to book club 72 pages English Not in a club? Learn more

Special offers and product promotions

• Amazon Business : For business-only pricing, quantity discounts and FREE Shipping. Register a free business account

Product details

ASIN : 812392268X Publisher : CBS; 1st edition (January 1, 2013) Language : English Paperback : 72 pages ISBN-10 : 9788123922683 ISBN-13 : 978-8123922683 Item Weight : 5.1 ounces Best Sellers Rank: #5,070,518 in Books (See Top 100 in Books) Customer Reviews: 1 rating

Videos

Help others learn more about this product by uploading a video!

Upload video

How would you rate your experience shopping for books on Amazon today

1 global rating

5 star	100%
4 star	0%
3 star	0%
2 star	0%
1 star	0%
How are ratings calculated?	

There are 0 customer reviews and 1 customer rating.

Back to top

Get to Know Us Careers Blog About Amazon

Make Money with Us Sell products on Amazon Sell apps on Amazon Become an Affiliate

Amazon Payment Products Amazon Business Card Shop with Points Reload Your Balance

Let Us Help You Amazon and COVID-19 Your Account

1/30/2021	Advanced Digital (Communication Laborate	ory Manual (Pb 2013): Pr	eeta Sharan / R.Bhargava Ran	na Gowd: 97881239	22683: Amazon.co
Investor Relation	ons	Advertise Your Produc	ts A	mazon Currency Converter	Yc	our Orders
Amazon Device Amazon Tours	25	Self-Publish with Us Host an Amazon Hub				ipping Rates & olicies
Amazon Tours		 See More Make Mon- with Us 	еу			eturns & eplacements
		with US				anage Your ontent and Devices
					Ar	nazon Assistant
					He	elp
Amazon Music Stream millions of songs	Amazon Advertising Find, attract, and engage customers	Amazon Drive Cloud storage from Amazon	English ₹ INR -	Indian Rupee United S AbeBooks Books, art & collectibles	ACX Audiobook Publishing Made Easy	Alexa Actionable Analytics for the Web
Sell on Amazon Start a Selling Account	Amazon Business Everything For Your Business	AmazonGlobal Ship Orders Internationally	Home Services Experienced Pros Happiness Guarantee	Amazon Ignite Sell your original Digital Educational Resources	Amazon Rapids Fun stories for kids on the go	Amazon Web Services Scalable Cloud Computing Services
Audible Listen to Books & Original Audio Performances	Book Depository Books With Free Delivery Worldwide	Box Office Mojo Find Movie Box Office Data	ComiXology Thousands of Digital Comics	DPReview Digital Photography	East Dane Designer Men's Fashion	Fabric Sewing, Quilting & Knitting
Goodreads Book reviews & recommendations	IMDb Movies, TV & Celebrities	IMDbPro Get Info Entertainment Professionals Need	Kindle Direct Publishing Indie Digital & Print Publishing Made Easy	Prime Video Direct Video Distribution Made Easy	Shopbop Designer Fashion Brands	Woot! Deals and Shenanigans
Zappos Shoes & Clothing	Ring Smart Home Security Systems	eero WiFi Stream 4K Video in Every Room	Neighbors App Real-Time Crime & Safety Alerts	Amazon Subscription Boxes Top subscription boxes – right to your door	PillPack Pharmacy Simplified	Amazon Second Chance Pass it on, trade it in, give it a second life

Conditions of Use Privacy Notice Interest-Based Ads © 1996-2021, Amazon.com, Inc. or its affiliates

Real Time Implementation of Multimedia Traffic Unicast and Multicast Groups Using Optical Network

¹ Bhargav Rama Gowd Resarch, scholar. Department of ECE JNTU Anantapur, Andhrapradesh, India. ¹rbg4u84@gmail.com.

²Nalina kumari. Student Department of ECE. The Oxford college of Engineering(TOCE) Bangalore, India ²Nalianpirangi45@gmail.com

Abstract— The performance and analysis of Multicast groups using optical cable of 1KM distance network based on RTP(Real time Transfer Protocol) for the communication on real time connection oriented network Multimedia communication in internet need a large Bandwidth, Viewers or Peoples are more interested in watching live programs. Thus here we are using the RTP, During the transmission of the data from server to client systems redundant bit are introduced leading to buffering in order to overcome this streaming is adopted. Transmitting Multicast data from one point of server to the interested receiver or groups receiver systems, The main aim of this project is to improve the life time of network, Qos, communication system, Increases Bandwidth and Essential to avoid packet loss, delay than the unicast communication.

Index Terms— Unicast, Multicast, Optical Network, Addresses of IP.

I. INTRODUCTION

The popular application in internet is a Multimedia communication. It needs to larger bandwidth a unicast is a point to point communication and acts a single direction or single host to overcome this here we taken Multicast group communication, Multicast environment consist of data is send server to multiple group of receiver is called multipoint communication or Multicast group, it gives packets are delivered high quality and The Qos(quality of service) is dependents on computer network. A Multicast address starts from 224.0.0.0 to the 239.255.255.255. the membership of hosts. Local area network of a the translation address between multicast traffic is sent over a switched Ethernet network. In this we used IGMP (Internet Group Management protocol) when TTL = 1 then the IGMP is a joining the Multicast groups to hosts, and it is transmits the Membership Report Messages to the router system. For given multicast packets. IGMP messages are never forwarded by routers provides a path to receiver groups of Multicast computer systems.

³S.Thenappan Department of ECE, Sri Krishna Institute of Technology, Bangalore,India. ³honey.souri@gmail.com

⁴Dattathreya Department of ECE, The Oxford College Of Engineering, Bangalore, India, ⁴dattugujjar28@yahoo.com

A Multicast address is chosen for the receives in a multicast group. The membership of hosts can join and leaves at any time, A multicast group can be active for a long time network system are converters the routers systems, In multicast data communication the router system are used the IGMP. Multicast is delivery of High quality video, Bandwidth.

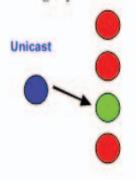


Fig1.1: unicast communication.

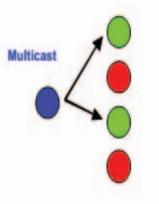


Fig 1.2: Multicast communication.

Fig 1.1 and fig 1.2 Comparison of unicast and multicast communication from server to client system a shown in above figs. Peoples are more want to watch live programs like audio, video conferences, cricket program, live News ect.. here Multicast results is more efficient than unicast.

II. SCOPE AND MOTIVATION

To maintain an unwanted flow of data also Quality of service(Qos), it is to avoid packet delay in the multicast data stream. Applying Qos and giving Multicast data packets. priority over other packets. The multicast stream usually have some buffering built in so that losses are smoothed out than the unicast communication. The data is transfer from one point to point communication or single directions. A service where data is delivery from a sender to a multiple receiver groups is called multicast communication. Main aim of this project is it eliminates redundant bits and gives the High quality of results, The more important gives the long distances communication by using Optical cable.

Gmp(Internet Group Managament Protocol) Multicast Communication

Internet group management protocol (IGMP) supports to multicast communication. It does not send messages to router system. IGMP is informs to router for receive multicast host or multicast packets from the given Multicast address of host.

Version (1)	IGMP byte (1-2)	Unused	16-bit Checksu m
32-bit g		(class D IP Ad	dresses)
	Fig 3.1:	IGMP Packet.	

0----

IGMP consist of 32- bit as shown in the fig 3.1. it has the 32-bit group address of class D addresses. The class D is a higher order four bits of 1110 and the range of IP Multicast group address is from 224.0.0.1 to address 239.255.255.255.

III. IP MULTICAST GROUP

IP Multicast point to group of receiver points. IP multicast over ATM point to multipoint virtual circuits(VCs) as feature of dynamically. It creates the ATM point to multipoint is a switched virtual circuits gives the IP multicast traffic more efficient. Components required are in hardware are Computer network, switches, Ethernet cable, optical cable, and software are Linux based on Ubuntu OS (version 14.04), Wireshark analyser to analyses the real time results. VLC Player to streaming the video and audio of Multimedia files. Because of live program connection oriented network used (RTP) Real time transport protocol like audio and video of Live conferences. RTP is Monitor transmission statistics

and quality of service(Qos) and synchronization of Multiple streams.

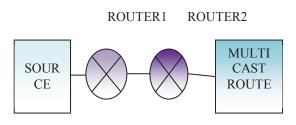


Fig 3.1: Block diagram of IP Multicast group.

The above fig 3.1 shows IP Multicast group of multimedia traffic. It consist of four network systems, first system is a server and two systems are act as a routers the last system has a client system or Multicast group. Router is used to forward the packets from the server(sources)to client(destination) network systems. For long distance communication I have used optical cable of 1Km for Multicast communication network. Multimedia is easy to watch and listen in the form of Text, audio, video. FM radio, this was shown by below fig 3.2 it has similar to the fig 3.1.

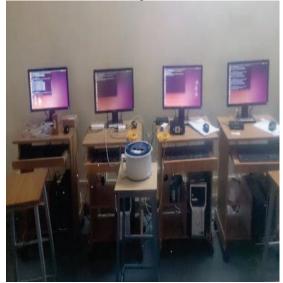


Fig3.2: unicast and Multicast communication using 1KM distances of Optical cable.

IV. ANALYSIS AND RESULTS OF REAL TIME APPLICATION

The above fig 3.2 unicast and Multicast communication of using Optical cable connecting the system network using switches by the desired Topology, configure the sever systems using linux based commands and also configure client systems. Similar to routers, then analysis the real time results of Audio, video. Comparison between the unicast and Multicast. Stored data is 2-3 Mbps in one second.

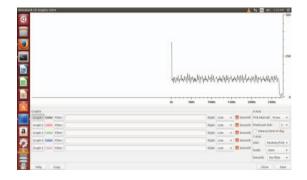


Fig 4.1 unicast audio file.

The above graph of unicast live Audio file consist along y-axis packets per interval and along x-axis time per second (.MP3).

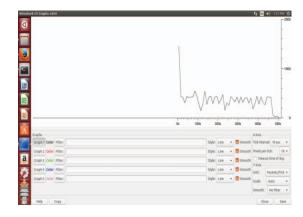


Fig 4.2: unicast video file.

The above fig4.2 is unicast live video file by analysis results using Wireshark analyser for point to point of receiver network system. Video file denoted as .Mp4. it is one second of data is stored or frame of 2 Mbps.

Filter.	🗧 🖯 🕙 Wireshi	ark 10 Graphs: eth	0					
No. Time Source 378946 789.21451600 IntelCor 20: 378948 789.2191400 Hittor 51 21: 378948 789.21958900 Partnell 3: 378948 789.21958900 Joursel IntelCor 20: 378949 789.2196400 (Artuell 3: 378959 789.2005890 IntelCor 20: 378959 789.22005800 IntelCor 20: 378951 789.22005800 IntelCor 20: 378951 789.22005800 IntelCor 20: 378952 789.22015800 IntelCor 20: 378952 789.22031900 Eiga=07 20: 378953 789.22031900 Eiga=07 20:	MMM	Wibert	www	hrm	MMM	ww.	W	500
378954 789.22256400 IntelCor 26:1 378955 789.22539500 IntelCor 0b:1	6405	660s	6805	7005	7205	7405	7605	
378956 789.23542400 Hewlett- 27:1 378957 789.23720500 Micro-St dd:4						XAxis		
378958 789.24359606 Gige-Byt 2d: 378959 789.25158706 Partwell 8c:	Cranha Color	Filter:	5	tyle: Line	• 🖸 Smoot	h Tick interva	L 1sec	•
378960 789.25335200 Micro-St de: 378961 789.25718600 Ibm 65:7e:ea		Filter:	5	ityle: Line	• 👩 Smoot	h Pixels per t	ick: 5	•
378962 789.25856866 Hewlett- 27:1 378963 789.25856866 Hewlett- 27:1 378963 789.25992106 IntelCor 26:1	Graph 3 Color	Filter		tyle: Line	• 👩 Smoot		time of da	
378964 789.25994506 IntelCor 26:1		Filter:	3	tyle: Line	• 🖸 Smoot	Y Axis	ackets/Tid	
378965 789.26389606 IntelCor 26:1		Filter:	1	tyle: Line	• 🖸 Smoot	1 1 1	Auto	
Ethernet II, Src: Msi a3:97:59 Address Resolution Protocol (rec								-
	Help C	ору	_	_		Close	Sa	ve

Fig 4.3: Multicast Audio file.

A service where the data is delivery from sender to Multiple receiver network systems or Multicast groups has shown in fig3.2. it consist of graph of long Y-axis Packets per interval and long X-axis time per seconds. By connected the etho and eth1(Ethernet 1). Audio file denoted as .Mp3. one second of data is stored in rang of 2-3Mbps of quality of real time result. The above fig 4.4: is a Multicast Video files of live systems it denoted by each frame consist of 2Mbps. Multicast of traffic is less than Unicast communication network. Video file configure by access of live programs by capture the frames from the web camera with streaming process.

Fig 4.4: Multicast Video file.

reshark: Summary						TA EE 4 0 J.STP
Rame Longft: Parnab Encapsulation				5839994	k/pceping	
Time Frit packet: Last packet: Elapsed					10.15.37:38 19.15:31:38	
Capture CSL Capture application:					6.5.30 gmeric 9.1.10.6 (rl. 10.6 from master-1.10)	
Capture Recomments Interface Dropped Packets ethic unknown	CaptureTill		Packet size lin 65535 bytes	e		
Display Display filter: Ignored packets:					0 (5.000m)	
	Captured	Displayed	Displayed %	Marked	Marked %	
Between first and last packet Aup packets/hec	256645 854,564 sec 475,385 64,783 bytes	196645	100.000%	*	0.00%	
Bytes Aug. bytes/last	25695843		100.007%	*	0.000%	

Fig 4.5 Summary of Multicast Packets.

The summary of Multicast packets captured by 39665, Displayed 39665 and given packet displayed 100.00%, the average per sec is 475.385, average packet size 64.783 bytes, Between first packet and last packet is 83.366 sec.

StellPaddr+ Steport	Dit IP addr	Dstport	Peckets	Packets/s	AugBa	Max Ber	Maxbursts	Burst alarms	Max buffers	Buffer alarms
fe82:2941:Set 61311	102:13	\$355	2	20/5	0.0Mbps	0.0 Mbos	1/100ms	0	0.188	0
fe80:2941:5eE 53558	(#02:1:3	5355	2	20/5	0.0Mbps	0.0 Mbps	1/100ms	0	0.1 KB	0
fe82:2941:5e8 54626	192:13	\$355	2	20.0	0.0Mbps	0.0 Mbps	1/100ms	0	0.188	0
fe80:2941;5e6 61406	102:13	5355	2	19/5	0.0Mbps	0.0 Mbes	1/100%	0	0.1 88	0
Tell0:2041:5el 56643	102:13	\$355	9	20/5	aphops	0.0 Mbps	1/100ms	0	0.1 KB	0
fe80-2941:Set 59366	102:13	\$355	2	20/5	0.0 Mbps	0.0 Mbos	1/100ms	0	0.1 KB	0
Tell0:2941:Sel 55022	1102:13	\$355	2	20/5	0.0 Mbps	0.0 Mbos	1/100ms	0	0.1 KB	0
fe80:2941:5eE 51585	1902-1-3	\$355	1	29/5	0.0Mbps	0.0 Mbos	1/100ms	0	0.1 88	0
fe80:29d3:6% 546	1102-1-2	547	21	0/5	6.0 Mbps	0.0 Mbos	1/100ms	0	0.2 88	0
fe80:29d3.69265488	1102:13	\$355	2	19/5	0.0 Mbps	0.0 Mbos	1/100ms	0	0.1 KB	0
fe80:25:3884 52508	102-1-3	\$355	1	9/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.183	0
fe80:25:3884 51654	102:13	\$355	1	0/5	0.0 Mbps	0.0 Mbes	1/100ms	0	0.1 KB	0
fe82-25:3884 54248	102:13	\$355	1	0.5	0.0 Mbps	0.0 Mbos	1/100ms	0	0.1 88	0
fe80:25:3884 64103	1102:1-3	\$355	1	0/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.1 KB	0
feat: 25: 3884: 57960	H02:13	\$355	1	0/5	0.0Mbps	0.0 Mbps	1/100ms	0	0.188	D
fe80:25:3884 61151	102:13	5355	4	0/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.188	0
fe80:25:3884 546	1902:12	547	6	0./5	0.0Mbps	0.0 Mbps	1/100ms	0	0.188	0
fe80:2dff.da5 546	1102:12	547	21	0/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.2 KB	0
fe80:2dft.da5 53029	102:13	5355	1	0/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.1 KB	0
1e80:2df1da5 55792	1702:13	\$355	2	20/5	0.0Mbps	0.0 Mbps	1/100ms	0	0.1×B	0
He80: 3060: d11 546	1902:12	547	1	0/5	0.0Mbps	0.0Mbps	1/100ms	0	0.2 KB	0
fe80:3060.d1! 53511	1102:1:3	\$355	1	0/5	0.0 Mbps	0.0 Mbps	1/100ms	0	0.188	0
fe80::3060.d1165525	H02:13	5355	1	0/5	0.0Mbps	0.0 Mbps	1/100ms	0	0.1.88	0
fe80:3060.d1164599	ff02:13	\$355	1	0/1	0.0 Mbps	0.0 Mbps	1/100ms	0	0.1.88	0
				5	elect a stream	n with left n	nouse button			

In this Multicast data streaming Eliminates the buffering while Transmission of live Audio or Video data from server to client bits Detected bits are 2988 Multicast streams. Max Bandwidth 1.5 Mbps and Max Buffer size is 1.4KB.

Multicast consist of IP address are IPV4 and IPV6 by given addresses.

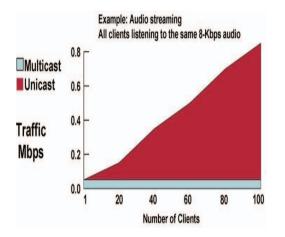


Fig 4.7: Comparison of Unicast and Multicast of Traffic in Mbps.

From the fig 4.7 Comparision of Unicast and Multicast of Traffic. The graph consist of long Y-axis Traffic Mbps and long X-axis Number of clients. Here we conclude that Multicast of a Traffic is less than Unicast as shown in fig 4.7.

V. CONCLUSION

The analysis and Implementation of a Multicast group communication using optical cable 1KM based on real time transfer protocol presented in this paper. The multicast network is used in Live program communications like a cricket, live News, Audio, Video conferences without buffering the data. The main aim of this project is increases the life time of Network bandwidth and Avoids the delay than the Unicast communication. Achieve Wavelength is 1550nm and Bandwidth is 1.5Mbps. Unicast traffic is more than the Multicast communication.

VI. FUTURE SCOPE

The analysis is carried out Multicast communication better than the Unicast. In order to Improve the Network system or network communication. Network system proposed work is Broadcast communication. The data transfer from sender to all Receiver systems or many Network computer.

REFERENCES

- Aijun Ding, Gee-Swee Poo, "A survey of optical multicast over WDM networks", Elsevier computer communications 26(2003) 193-200.
- [2]. Tze-ping Low, Y.-W. Peter Hong and C.-C. Jay Kuo, "Opportunistic Multicast Scheduling Multiple Multicast Groups", IEEE communication society subject matter experts for publication in the IEEE Globecom 2011 proceedings.
- [3]. Jie Li,Malsthi Veerarnghavan, Steve Emmerson, and Robert. D. Russell, "File Multicast Transport Protocol(FMTP)", 2015 15th IEEE/ACM International Symposium on cluster,Cloud and Grid Computing.

- [4]. Gemmel et al,"The PGM Reliable Multicast Protocol"Wu, "Verification Analysis of Reliable Multicast Protocol"
- [5]. Tanenbaum and Steen, "Distributed system Principle and Paradigms"
- [6]. Internet Research Tsk Froce, Reliable Multicast Research Group http://www.irtf.org/charter?gtype=old-rg&group=rmrg

3/28/2021		A digital Cros	s Conn	ect (DCS) s	witch for multicas	t and broadca	ist traffic IEEE Conf	erence Public	ation IEI	EE Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE	Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECar	t (2) Create A	Account	Personal Sign In Đ
				Browse 🗸	My Settings 🗸	Help 🗸	Institutional	Sign In		
					Institution	al Sign In				
	All		-						۹	
								ADVAN	CED SEARC	Н
Conferences > 2	2016 IEEE Anni	ual India Confer	Ø							
•			t (DC	S) swi	tch for mu	lticast a	nd			
broadca										
Publisher: IE		Cite This	Cite	This	L PDF					
Gunjan Thakur	; Preeta Sha	ran; Mrinal Sa	arvagya	All Autho	rs					
						<	Export to	More L	Like This	
100 Full Text Views							Collabratec Alerts	Field Pro		Gate Array Design for Fast Fourior
TOAT VIEWS							Manage Content Ale	Transfor 2010 Inte	m Processo	r onference on E-
							Add to Citati	Publishe		
							Alerts		rocessing wi	ching real-time digital th field-programmable
A Is a first of								IEEE Tra Publishe		n Education
Abstrac	Dov	wnl								Show More
Document Se	PDI	F								
II. Related Wo	At			-			ic applications (audic n imperative demand			
III. Proposed [Digital for	hi View mo								
Cross Con Switch (DC	CS)	Metadata								
IV. Conclusior	n Th		0				ions (audio, video,			
Authors	s pe	erformance sw	itches.	Various swi	tching architectur	es have been		In		
Figures	de	vice and has l	been co	onsidered th	e most suitable a	architecture be	bar-based switching ecause of its low cost			
Reference	Dig	gital Cross Co	onnect ((DCS) switch		nd multicast tr	affic support. The			
Keyword	bro	oadcast) using	g Verilo	g Hardware	Description Lang	gauage (HDL)	es (multicast and in Xilinx software.			
Metrics	fle	irther, the desi xibility, adaptil	-		ented on the FPG	ia duara in oro	aei tu achieve			
More Like	This Pu	Iblished in: 2	016 IEI	EE Annual I	ndia Conference	(INDICON)				
	Da	ate of Confere	ence: 1	6-18 Dec. 2	016 INSPEC	C Accession	Number: 16640130			

Date Added to IEEE Xplore: 02 February 2017	DOI: 10.1109/INDICON.2016.7838949						
	Publisher: IEEE						
ISBN Information:	Conference Location: Bangalore, India	ł					
Electronic ISSN: 2325-9418	Electronic ISSN: 2325-9418						
		_					
i≣ c	ontents						
I. Introduction In recent years we have seen a large nur the use of multicasting. These rapidly gro as sharing of audio & video, group based	owing popular applications such d interaction, online gaming,						
video conferencing, streaming of multime increase of multicast traffic over the inter advancement in technology offers a wide applications and services such as live vide	net. At the same time the e range of broadcasting						
learning, IPTV etc. Therefore, the fusion multicasting traffic has created an impera performance switches capigoliendthaodlin communication efficiently. As a result, no	a tive demand fo r high ngop Readbing nult point						
have been proposed for efficient multicat Connect (DCS) is a crossbar based switt most suitable switching architecture owir	ch and has been considered the						
intrinsic multicast capabilities [1], [2]. The simultaneous connection between any in ports. DCS has various applications white Centers (MSC), LAN connectivity, Broad	put ports and all the output ch includes Mobile Switching						
Exchanges, Internet hubs etc.							
Authors		~					
Figures		~					

Figures	~
References	~
Keywords	~
Metrics	~

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f in У
	VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	
		TECHNICAL INTERESTS	CONTACT & SUPPORT	

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

3/28/2021

A digital Cross Connect (DCS) switch for multicast and broadcast traffic | IEEE Conference Publication | IEEE Xplore

» Change Username/Password

- » Update Address
- » Payment Options
 » Order History
- » Communications Preferences

» Technical Interests

» Profession and Education

- » US & Canada: +1 800 678 4333
- » Worldwide: +1 732 981 0060
 - » Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

» View Purchased Documents

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Ω

OSA Publishing

(https://www.osapublishing.org)

OSA Publishing (https://www.osapublishing.org) > Conference Papers (https://www.osapublishing.org/conferences.cfm) > Photonics (https://www.osapublishing.org/conference.cfm? meetingid=139) > 2016 (https://www.osapublishing.org/conference.cfm?meetingid=139&yr=2016) > Tu4A (https://www.osapublishing.org/conference.cfm?meetingid=139&yr=2016#Tu4A) > Page Tu4A.69 © 2016 OSA

PHOTONIC CRYSTAL NANO CAVITY PRESSURE SENSOR

Indira Bahaddur, P.C. Srikanth, and Preetha Sharan

13th International Conference on Fiber Optics and PhotonicsOSA Technical Digest (online) (Optical Society of America, 2016),paper Tu4A.69• https://doi.org/10.1364/PHOTONICS.2016.Tu4A.69 (https://doi.org/10.1364/PHOTONICS.2016.Tu4A.69)

 $\bowtie \prec$

",, 👻 📠 (viewmedia.cfm?uri=Photonics-2016-Tu4A.69&seq=0) 🕼

(/user/favorites_add_article.cfm?articles=356583)

PDF Article

(viewmedia.cfm?uri=Photonics-2016-Tu4A.69&seq=0)

A Not Accessible

Your account may give you access

Abstract

References (19)

Back to Top

回 Get PDF (viewmedia.cfm?uri=Photonics-2016-Tu4A.69&seq=0)

Abstract

OSA | PHOTONIC CRYSTAL NANO CAVITY PRESSURE SENSOR

Photonic crystal technology is used in many areas of detection and measurements of parameters like pressure, temperature, displacement etc. The sensor is based on two dimensional photonic crystals. A two dimensional photonic crystal gives high sensitivity. The Nano cavity is formed by modifying the radius of one air hole in the centre of lattice structure. Simulation results show that resonant wavelength of Nano cavity shifts to longer wavelength with increasing the pressure.

© 2016 Optical Society of America

PDF Article (viewmedia.cfm?uri=Photonics-2016-Tu4A.69&seq=0)

More Like This

Diverse dynamics in silicon photonic crystal nano-cavities towards photonic microwave and secure communications (/abstract.cfm?uri=ACPC-2016-ATh2H.2) Jia Gui Wu, Shu-Wei Huang, Hao Zhou, Ling Chen, and Fei Wang ATh2H.2 Asia Communications and Photonics Conference (ACPC) 2016

Torsion-Free Photonic Crystal Pressure Sensor Array Using Novel Piston-type Resonator Array (/abstract.cfm?uri=CLEO_SI-2013-CM4O.2) Daquan Yang, Huiping Tian, Nannan Wu, Yi Yang, and Yuefeng Ji CM4O.2 CLEO: Science and Innovations (CLEO_SI) 2013

Pressure/Temperature Sensor Based on a Dual-Core Photonic Crystal Fiber (/abstract.cfm?uri=ACP-2011-83071N) Daru Chen, Gufeng Hu, and Lingxia Chen

83071N Asia Communications and Photonics Conference and Exhibition (ACP) 2011

View More...

International Conference on Fibre Optics and Photonics 2016 Kanpur India

4-8 December 2016 ISBN: 978-1-943580-22-4

From the session Poster Session I (Tu4A) (/conference.cfm?meetingid=139&yr=2016#Tu4A)

Home (/)

То Тор 🕇

 Previous Article (abstract.cfm?uri=Photonics-2016-Tu4A.68) Next Article (abstract.cfm?uri=Photonics-2016-Tu4A.7)

3/28/2021	An area	a efficient multipl	exer for crossbar a	rbiter design usin	g quantum dot o	ellular automata IEEE	Conference Pub	lication IEEE Xplore
IEEE.org	IEEE Xplo	ore IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🔿
≡			Browse 🗸	My Settings 🗸	Help 🗸	Institutional Sigr	ı In	
				Institution	al Sign In			
	All		•				۵	
							ADVANCED SEAR	СН
Conferences >	2016 IEEE	International Confe	•					
			lexer for cr	ossbar ark	oiter desig	gn using		
•	ſ	cellular au	Itomata					
Publisher: I	IEEE	Cite This	Cite This	A PDF				
Gunjan Thaku	ur ; Ambika	Gumpe ; Mrinal S	Sarvagya ; Preeta Sl	naran All Autho	ors			
					~	Export to	More Like This	
3 Paper	150 Full				C	Collabratec Alerts	Fault-tolerant routin	> ng methodology for
Citations	Text Views					Manage		onal Symposium on Modeling, Optimization
						Content Alerts	and Simulation (PA Published: 2017	
						Add to Citation Alerts	Performance asses	
								opologies onal Conference on nd Systems (ICDCS)
Abstra	act						Published: 2014	
Document S	Sections	Downl PDF						Show More
I. Introductio	on							
II. Quantum Cellular A			lemand for the desig to advancement in /iew more					
III. Multiplex Arbiter D		Metadata						
IV. Proposed	d Work	Abstract: The demand for	r the design and im	plementation of e	fficient crossbar	arbiters has raised		
V. Conclusio	on		ment in network-on ion among different					
Autho	ors		multiplexers are build be the best connection	0	•			
Figure	es		ep the overall area otimized design for 4			n this paper we have ular Automata		
Referen	nces	advantages suc	•	all size, low powe	er consumption a	Ind very high speed.		
Citatio	ons		lesign has been sin e derived that the pr			rom the simulation 44 μm ² area which		
Keywo	rds	been reduced b	nan the previous mo by 23 % Therefore, t imal solution for the	the proposed 4:1	MUX design in	QCA implementation		
Metric	CS	, - Pr						

3/28/2

3/2021 An are More Like This	ea efficient multiplexer for crossbar arbiter de Published in: 2016 IEEE International Cor Information & Communication Technology	•	
	Date of Conference: 20-21 May 2016 Date Added to IEEE <i>Xplore</i> : 09 January 2017 ISBN Information: Electronic ISBN:978-1-5090-0774-5 Print on Demand(PoD) ISBN:978-1-5090-0775-2	INSPEC Accession Number: 1658296 DOI: 10.1109/RTEICT.2016.7807970 Publisher: IEEE Conference Location: Bangalore, Indi	
	L Introduction A cross connect switch acts as a building communication network and causes the growing internet and mobile traffic requir routers. A cross connect switch consists includes I/O ports, arbiter/scheduler and function of arbiter is to projedirctmflohter output ports for the successful transfer of control signals for the configuration of sw throughput and utilization. Among the va the switching speed of a DCS system. H arbiter is required for overall network per		
	Authors	~	

	Metrics			~	
IEEE Personal Acc	ount	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PA	SSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	fin
		VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	

TECHNICAL INTERESTS

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

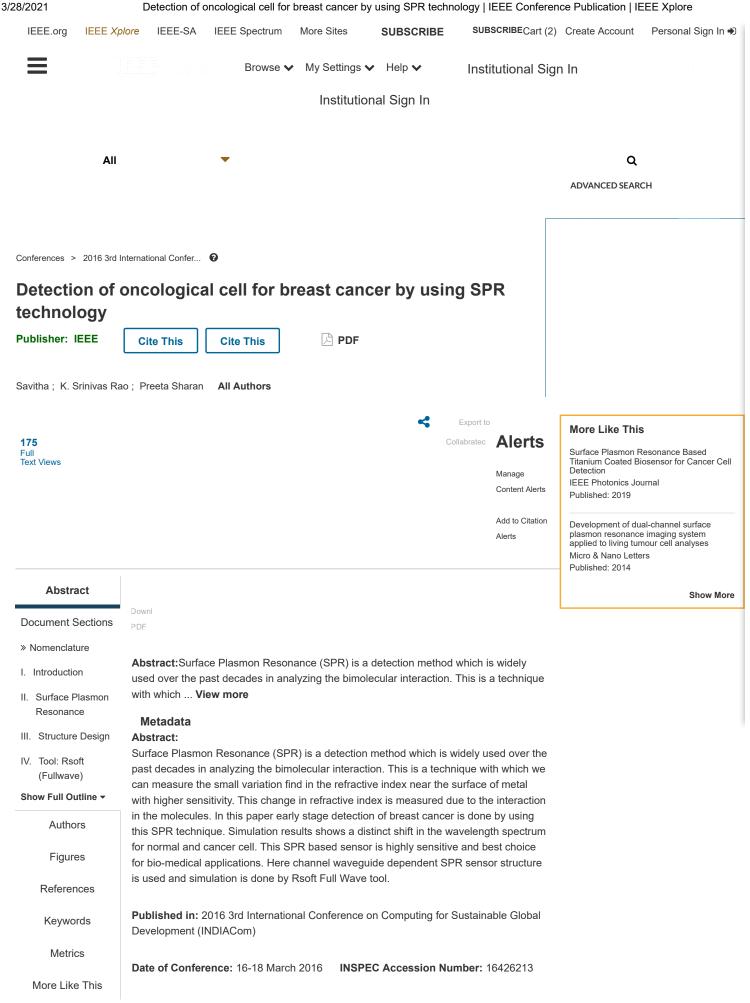
IEEE Account

Purchase Details

Profile Information

Need Help?

CONTACT & SUPPORT


 \checkmark

Figures

References

Citations

Keywords

3/28/2021	Detectio	on of oncological cell for breast ca	ncer by using SPR technology IEEE	Conference Publication IEEE	Kplore
	2016 ISBN Int Electr DVD I Print d	ed to IEEE <i>Xplore</i> : 31 October formation: ronic ISBN:978-9-3805-4421-2 SBN:978-9-3805-4420-5 on Demand(PoD) 978-1-4673-9417-8	ndia		
		:= c			
	Nomen SPR-	clature			
	Surface FDTD-	Plasmon Resonance			
	SPW-	ifference Time Domain Plasmon Wave			
	Authors		~		
	Figures		~		
	Reference Keyword		× ×		
	Metrics			~	
IEEE Personal	Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAM		PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060	f in ¥

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

TECHNICAL INTERESTS

CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

https://ieeexplore.ieee.org/abstract/document/7724763

3/28/2021		Wireless d	igital cro	ss connect \$	SOC for optical ne	etworks using	FPGA IEE	E Conference	Publication IEE	E Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE	Spectrum	More Sites	SUBSCRIBE	E SUBS	CRIBECart (2)	Create Account	Personal Sign In Đ
≡				Browse 🗸	My Settings 🗸	Help 🗸	Institu	utional Sign	In	
					Institution	al Sign In				
	All		•						Q	
									ADVANCED SEARC	н
Conferences > 2	2016 3rd Interna	tional Confer	0							
	digital	cross o	conne	ect SOC	C for optic	al netwo	o <mark>rks us</mark> i	ing		
FPGA										
Publisher: IE	EEC	ite This	Cite	This	PDF					
Gunjan Thakur	Vemana ; Mr	inal Sarvagya	a; Preeta	a Sharan 🛛 🖌	All Authors					
110						4	Export to Collabratec	Alerts	More Like This	
Full Text Views									Field-Programmable	essing System-on-Chip e Gate Array Platform
								Vanage Content Alerts	IEEE Micro Published: 2016	
									Verification of Com	olex Multimedia System-
								Add to Citation	on-Chip Realized in Gate Array Device	Field Programmable
									2020 International (4.0 Technology (I4T Published: 2020	Conference on Industry Tech)
Abstrac	rt									Show More
Document Se	Dov PDF							L		
» Nomenclatur										
I. Introduction			-		inications revolut research in the d	-		. The		
II. Related Wo		ailable Digita					0			
III. Proposed I Architectur		Metadata stract:								
IV. DCS Modu	lles	-			revolution led by omain of switching		-			
with Simula Results	Cr	oss Connect	ts (DCS)	IP cores ree	quires lot of reeno	gineering and	recurrent er	gineering		
Show Full Out	line -				on and also are in ensive to develop					
Authors					n performance, so ations and data ra					
Figures	2			-	nous mode, asyn request & acknov					
Referenc	20				IDL) in Xilinx ISE nily based FPGA		oftware can	be		
Keyword		blished in:	2016 3rd	d Internation	al Conference or	n Computing fo	or Sustainab	le Global		
Metrics	Do	velopment (

3/28/2021	Wirele	ess digital cross connect SOC for c	optical networks using FPGA IEEE (Conference Publication IEEE X	olore
More Like This	Date of C Date Add 2016	onference: 16-18 March 2016 ed to IEEE <i>Xplore</i> : 31 October	ndia		
		: = co			
	Nomen DCS- Digital 0	clature Cross Connect			
	SOC- System	On Chip			
	ASIC-	ogrammable Gate Array Sign in to Continu tion Specific Integrated Circuits			
	SDH-	onous Digital hierarchy			
	IP- Intellect	ual Property.			
	Authors		~		
	Figures		~		
	Reference			~	
	Keyword	ds		~	
	Metrics			•	
IEEE Personal Ac		Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/P	ASSWORD	PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT	t in y

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Purchase Details

Profile Information

Need Help?

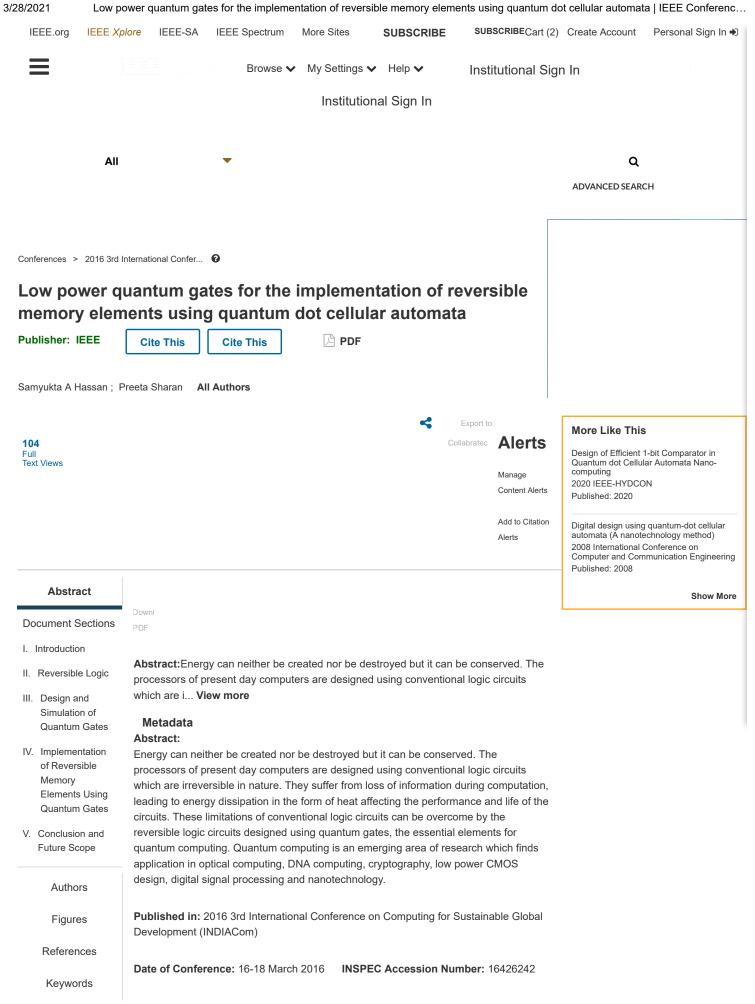
» Change Username/Password

» Payment Options

» Communications Preferences

» US & Canada: +1 800 678 4333

LEEE og LEEE Ag	3/28/2021		An op	tical storage d	evice by sur	face plasm	non resonance	IEEE Conference	Public	ation IEEE Xplo	ore
Institutional Sign in	IEEE.org	EEE Xplore	IEEE-SA	IEEE Spectru	um More S	Sites	SUBSCRIBE	SUBSCRIBECa	rt (2)	Create Account	Personal Sign In 🎝
All CDENTED STATE Contract State Contract State <th>≡</th> <th></th> <th></th> <th>Brows</th> <th>se 🗸 My S</th> <th>ettings 🗸</th> <th>Help 🗸</th> <th>Institutional</th> <th>Sign</th> <th>In</th> <th></th>	≡			Brows	se 🗸 My S	ettings 🗸	Help 🗸	Institutional	Sign	In	
AUXCCD SURVEY Contracts and a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure is a solution is based on the array structure, fast in Survey of the array structure is a solution in the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure is a solution in the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure in a solution is Not structure in cubicies. Were more Survey of the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution in the array structure in a solution is based on the array s					In	stitution	al Sign In				
AUXCCD SURVEY Contracts and a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure is a solution is based on the array structure, fast in Survey of the array structure is a solution in the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure is a solution in the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure, fast in Survey of the array structure in a solution is based on the array structure in a solution is Not structure in cubicies. Were more Survey of the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution is based on the array structure in a solution is Survey of the array structure in a solution in the array structure in a solution is based on the array s											
Currence > 2 28 2 de international Conter		All		•						Q	
An optical storage device by surface plasmon resonance Publisher: IEEE Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 109 Cite Tris Die 108 Cite Tris Die 109 Die Die 100 Die Die 101 Die Die 102 Die Die 103 Die Granden Die 104 Die Die Die 105 Die Granden Die Die 106 Die Die Die Granden Die Granden 108 Die Granden										ADVANCED SEARC	Ή
An optical storage device by surface plasmon resonance Publisher: IEEE Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 108 Cite Tris Die 109 Cite Tris Die 108 Cite Tris Die 109 Die Die 100 Die Die 101 Die Die 102 Die Die 103 Die Granden Die 104 Die Die Die 105 Die Granden Die Die 106 Die Die Die Granden Die Granden 108 Die Granden											
Publisher: IEEE Cite This Cite This PDF H. A. Navyashtree ; Preeta Sharan All Authors Pier Text Verse All Authors All Secure Content Authors Pier Text Verse All Secure Content Authors All Secure Content Authors Pier Text Verse All Secure Content Authors All Secure Content Authors Abstract Document Sections Document Sections Document Sections Document Sections I. Bornel Document Sections Document Sections Document Sections Metadata I. Barrier Text The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cabdida: New more Metadata I. Metadata Metadata Metadata Number Participae SPR Metadata Metadata Metadata Subscription of Barry of barry of bachorig data and retransmitting, sub parson accessful storage device as similar to Blu-ray technology. Metadata Metadata Number Participae I SPR Metadata Metadata Metadata Metadata Subscription of Barry o	Conferences > 20	016 3rd Internat	ional Confer	0							
Publisher: IEEE Cite This Cite This PDF H. A. Navyashtree ; Preeta Sharan All Authors Pier Text Verse All Authors All Secure Content Authors Pier Text Verse All Secure Content Authors All Secure Content Authors Pier Text Verse All Secure Content Authors All Secure Content Authors Abstract Document Sections Document Sections Document Sections Document Sections I. Bornel Document Sections Document Sections Document Sections Metadata I. Barrier Text The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cabdida: New more Metadata I. Metadata Metadata Metadata Number Participae SPR Metadata Metadata Metadata Subscription of Barry of barry of bachorig data and retransmitting, sub parson accessful storage device as similar to Blu-ray technology. Metadata Metadata Number Participae I SPR Metadata Metadata Metadata Metadata Subscription of Barry o	An ontica	al stora	ne devi	ce hv su	rface n	lasmo	n resona	nce			
108 Control					- ·		111630114				
198 For Views Control Control<				one mis							
108 Text News Context Alers Marage Context Alers Marage Contex	H. A. Navyashree	e; Preeta Sh	aran All A	uthors							
Full Text Mews Manage Control Advers Manage Control Advers Manage Control Advers Near infrared surface plasmon resonance of the surface plasmon resonance of the surface plasmon resonance to characterize plasmon resonance of the surface of the surface plasmon re							<	Export to			
Text Mews Manage Content Alerts Manage Content Alerts Near Infrared surface plasmon resonance of got manoing based plasmonic crystals for sense againations in Alerts Near Infrared surface plasmon resonance of got manoing based plasmonic crystals and to Clatton Alerts Near Infrared surface plasmon resonance of got manoing based plasmonic crystals and to Clatton Alerts Near Infrared surface plasmon resonance of got manoing based plasmonic crystals and to Clatton Plasmone Near Add to Clatton Alerts Near Plasmone Near Alerts Near Alerts Near Plasmone Near Alerts Near Alerts <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Collabratec Alert</th> <th>s</th> <th>More Like This</th> <th></th>								Collabratec Alert	s	More Like This	
Add to Catalon Profession applications 2009 Bit EEE Conference on Nanotechnology (EEE NANO) Add to Catalon Add to Catalon Add to Catalon Add to Catalon Add to Catalon Published: 2009 Atomatechnology (EEE NANO) Published: 2009 Enhancement of Thermal Bradiation in Plasmonic Thermal Entiter by Surface Plasmon Document Sections Por Por Show More 1. Introduction Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer Show More III. Principle of SPR Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectic medium, In this paper we use monochromatic ling this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Authors Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Publisher: IEEE Conference: References: References: 16-18 March 2018 INSPEC Accession Number: 16426639 Date Added to IEEE Xplore: 31 October <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Manage</th> <th></th> <th>Near infrared surfac</th> <th>e plasmon resonance</th>								Manage		Near infrared surfac	e plasmon resonance
Abstract Published: 2009 Abstract Document Sections 00000 Port Parmonic Thermal Entiter by Surface Plasmonic Thermal Entiter by Surface Plasmonic Resonance Plasmonic Resonance 11. SPR (Surface Plasmonic Resonance) Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more 11. Principle of SPR Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more 11. Principle of SPR Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, in this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Authors Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figur								Content Ale	erts	for sensor application 2009 9th IEEE Conf	ons ference on
Abstract Document Sections Document Sections Document Sections 2008 bit IEEE Conference on Nanotechnology I. Introduction Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more Show More III. Principle of SPR Resonance Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more Metadata IV. Memory Device Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline * Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 ISBN Information: Conference Location: New Delhi, India <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>tion</th> <th></th> <th>EE-NANO)</th>									tion		EE-NANO)
Abstract Document Sections Show More 1. Introduction II. SPR (Surface Plasmon Resonance) Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more Metadata 10. Principle of SPR Resonance) Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of abstrohing data and retransmiting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, in this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage is needed in this version of hardware in order to promote a successful storage is needed in this version of hardware in order to promote a successful storage is needed in this version of hardware in order to promote a successful storage is needed to IEEE Xplore: 31 October Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date Added to IEEE Xplore: 31 October Publisher: IEEE Conference Location: New Delhi, India ISBN Information: SisN Information: Conference Location: New Delhi, India Conference Location: New Delhi,											
Document Sections Show More 1. Introduction Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more Metadata Abstract: Metadata 10. Principle of SPR Metadata Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date Added to IEEE Xplore: 31 October Publisher: IEEE Z016 Conference Location: New Delhi, India	Abstract									Plasmon Resonance 2008 8th IEEE Conf	e
Introduction Abstract: The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more Metadata III. Principle of SPR Metadata Abstract: IV. Memory Device The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, with Surface Plasmon Resonance Metadata V. Comparision of Blu-Ray Disk with Surface Plasmon The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline v Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Authors Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Date Added to IEEE <i>Xplore</i> ; 31 October Publisher: IEEE 2016 Conference Loccation: New Delhi, India	Document Sec	tiono	nl							•••	
II. SPR (Surface Plasmon Resonance) acceptance and used to create a availability of information. We created a 4 layer structure in cuboids View more III. Principle of SPR Metadata Abstract: IV. Memory Device Metadata cused to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline • Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 Conference Location: New Delhi, India		PDF									Show More
Plasmon Resonance) structure in cuboids View more III. Principle of SPR Metadata Abstract: IV. Memory Device The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 Conference Location: New Delhi, India	II. SPR (Surface	<u> </u>		-			•				
Image: Principle of SFK Abstract: IV. Memory Device The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline + Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 Conference Location: New Delhi, India			•			5		,			
IV. Memory Device The data storage mechanism is based on the array structure, fast in acceptance and used to create a availability of information. We created a 4 layer structure in cuboids, which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline • Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Conference Location: New Delhi, India ISBN Information: ISBN Information:	III. Principle of S	JER									
V. Comparison of Blu-Ray Disk with Surface Plasmon Resonance Technology which have the capacity of absorbing data and retransmitting, via plasmonic media even in transmission of array of high conductive aperture inside dielectric medium, In this paper we use monochromatic light in order to record and store data in memory device. Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Date Added to IEEE Xplore: 31 October Publisher: IEEE Keywords 2016 Conference Location: New Delhi, India	IV. Memory Dev	vice The	e data storag								
Surface Plasmon in transmission of array of high conductive aperture inside dielectric medium, In this Resonance paper we use monochromatic light in order to record and store data in memory device. Technology Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 Conference Location: New Delhi, India ISBN Information: Information:		OT whi		•					en		
Technology Optical storage is needed in this version of hardware in order to promote a successful storage device as similar to Blu-ray technology. Show Full Outline - Published in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Date Added to IEEE Xplore: 31 October Publisher: IEEE Z016 Conference Location: New Delhi, India	Surface Plas	mon in ti									
Snow Full Outline • Published in: 2016 3rd International Conference on Computing for Sustainable Global Authors Published in: 2016 3rd International Conference on Computing for Sustainable Global Figures Development (INDIACom) References Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 Date Added to IEEE Xplore: 31 October Publisher: IEEE 2016 Conference Location: New Delhi, India ISBN Information: ISBN Information:		Opt	tical storage	is needed in t	his version o	f hardware		-			
Figures Development (INDIACom) Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Date Added to IEEE Xplore: 31 October Publisher: IEEE Keywords 2016 Conference Location: New Delhi, India	Show Full Outlin	stoi ∎	rage device a	as similar to B	lu-ray techno	ology.					
Figures Date of Conference: 16-18 March 2016 INSPEC Accession Number: 16426639 References Date Added to IEEE Xplore: 31 October Publisher: IEEE Keywords 2016 Conference Location: New Delhi, India ISBN Information: ISBN Information: ISBN Information:	Authors				national Cont	ference on	n Computing for	⁻ Sustainable Globa	al		
References Date Added to IEEE Xplore: 31 October Publisher: IEEE Keywords 2016 Conference Location: New Delhi, India ISBN Information: Image: Conference Location in the ima	Figures		stophion (ii								
Keywords 2016 Conference Location: New Delhi, India	Reference		e of Confer	ence: 16-18 N	larch 2016	INSPEC	CAccession N	umber: 16426639			
ISBN Information:	Kevwords			IEEE Xplore:	31 October						
	Metrics	·		ation:		Confere	ence Location	: New Delhi, India			


More Like This						
		E Co	ntents			
	I. Introduc	tion				
	As there is there is a s and scalin SPR [surfa combined address th the micro g having the s, pendrive to be like r compare th					
	Authors		~			
	Figures			~		
	References	6		~		
	Keywords			~		
	Metrics			~		
IEEE Personal Acco			Profile Information COMMUNICATIONS PREFERENCES	Need H	elp? ADA: +1 800 678 4333	Follow f in ¥
		VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION		IDE: +1 732 981 0060 & SUPPORT	
A not-for-profit organization	, IEEE is the wo		nination Policy Sitemap Privacy & Opting C ization dedicated to advancing technology for t ement to the terms and conditions.			
IEEE Account		Purchase Details	Profile Information	Nee	ed Help?	
» Change Username/Pas	sword	» Payment Options	» Communications Preferences	» US	& Canada: +1 800 678	4333
» Update Address		» Order History » View Purchased Documents	» Profession and Education » Technical Interests		orldwide: +1 732 981 00 ntact & Support	160

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

3/28/2021			An efficient desig	n of QCA based r	memory IEEE	Conference Publication	IEEE Xplore	
IEEE.org	IEEE Xplore	IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🎝
			Browse 🗸	My Settings ✓	Help 🗸	Institutional Sigr	ı İn	
				Institution	al Sign In			
	All		•				۹	
							ADVANCED SEAR	СН
							More Like This	6
Conferences > 2	2016 3rd Internat	tional Confer	Ø				The Ternary Quanti Automata Memorizi	
An effici	ent desi	gn of Q	CA based	memory			2009 IEEE Comput Symposium on VLS Published: 2009	ter Society Annual
Publisher: IE	EE C	ite This	Cite This	PDF				Analyses for Quantum-
							Dot Cellular Autom	on Nanotechnology
S.K. Pratibha ;	I.N. Vinay Kui	mar; Preeta	Sharan All Autho	ors				Show More
161					~	Export to Collabratec Alerts	L	
Full Text Views						Manage		
						Content Alerts		
						Add to Citation		
						1010		
Abstrac	t							
Document Se	ctions PDF							
» Nomenclatur		stract In this	s paper we have de	signed and imple	montod OCA	momory such as		
I. Introduction	hyb	orid memory.	Quantum dot cellu	ular automata nano		•		
II. Basics Con Quantum D	ot		nology in today V	lew more				
Cellular Aut	Ab	letadata stract:						
III. Qcamemor			•			uch as hybrid memory ovative technology in		
IV. Simulation Results	tod	-		-		its of the serial and of operation, reduced		
Show Full Outl	ine 🔻 circ	uit area, hig	h efficiency, low po	ower consumption	or we can say	that zero power		
Authors	son	ne limitations	-		-	chnology which has Its are verified by truth		
Figures	tab	le.						
Reference	85	blished in: 2 velopment (I		nal Conference or	n Computing fo	or Sustainable Global		
Keyword		te of Confer	rence: 16-18 Marcl	h 2016 INSPEC	C Accession	Number: 16426159		
Metrics	Dat	te Added to	IEEE Xplore: 31 (October Publish	ner: IEEE			
More Like	This 201	16		Confer	ence Locatio	n: New Delhi, India		

	DVD IS Print o	ormation: onic ISBN:978-9-3805-4421-2 SBN:978-9-3805-4420-5 n Demand(PoD) 178-1-4673-9417-8			
		E Co			
	Nomenc Complem	lature nentary Metal-O Siide-BetoiComdinc			
	Authors		~		
	Figures		~		
	Reference	es	~		
	Keywords	5	~		
	Metrics			×	
IEEE Personal Acc	ount	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PAS	SSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT	∍ fin ¥
A not-for-profit organization	, IEEE is the w		mination Policy Sitemap Privacy & Opting nization dedicated to advancing technology fo eement to the terms and conditions.		
IEEE Account		Purchase Details	Profile Information	Need Help?	
» Change Username/Pas	sword	» Payment Options	» Communications Preferences	» US & Canada: +1 800	678 4333
» Update Address		» Order History	» Profession and Education	» Worldwide: +1 732 98	31 0060
		» View Purchased Documents	» Technical Interests	» Contact & Support	

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Metrics	Date Adde 2016	-		ndia	
More Like This	ISBN Inf		Conference Location: New Delhi, I	ndia	
	DVD IS	SBN:978-9-3805-4420-5			
	ISBN:	978-1-4673-9417-8			
	conventi from los	ional logic circuits which are irreve s of information as the intermedia			
	Inarresi				
	principle the form	, the loss of o <mark>ne উট্টিমিটিাকিঞ্জিটিটিয়াটাটি</mark> of heat which is of the order of k	超昂ि绝望的的 in ITn2 joules where 'k' is		
	principle the form Boltzma	, the loss of o <mark>ne ອີນຢາກ່າວເຫລະເບົາກໍາ</mark> ເຫ of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J	細 影砲din 와gy dissipation in I <u>1n2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute		
	principle the form Boltzma tempera	, the loss of one 敏朗和杨楠和和神神 of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is		
	principle the form Boltzma tempera	, the loss of one 敏朗和杨楠和和神神 of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is	~	
	principle the form Boltzma tempera directly p	Conference Location: New SBN Information: Electronic ISBN:978-9-3805-4421-2 DVD ISBN:978-9-3805-4420-5 Print on Demand(PoD) ISBN:978-1-4673-9417-8 Contents Introduction The computing elements of present day processors are designed usin zonventional logic circuits which are irreversible in nature. They suffer rom loss of information as the intermediate bits used to compute the inal results are discarded. According to Von Neumann Landeur principle, the loss of one Signite/Material@ele@el@iggy_dissipation in the form of heat which is of the order of KT1n2 joules where 'k' is 380tzman's constant (1.38056 x 10 ⁻²³ JK ⁻¹) and 'T' is the absolute emperature at which computation is carried out. Heat dissipation is directly proportional to the number of bits lost during computation. uthors Profile Information Mint Purchase Details Profile Information Profile Information	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is	~ ~	
	principle, the loss of one Signition and the form of heat which is of the order of kT1n2 joules where 'k' is Boltzman's constant (1.38056 $\times 10^{-23} J K^{-1}$) and 'T' is the absolute temperature at which computation is carried out. Heat dissipation is directly proportional to the number of bits lost during computation.		細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is		
	principle the form Boltzma tempera directly p Authors Figures Reference	e, the loss of one ອິນຍາກທັດການເປັນເອົາ of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri proportional to the number of bits	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is	~	
	principle the form Boltzma tempera directly p Authors Figures Reference	e, the loss of one ອິນຍາກທັດການເປັນເອົາ of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri proportional to the number of bits	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is	~ ~	
	principle the form Boltzma tempera directly p Authors Figures Referenc Keyword	e, the loss of one ອິນຍາກທັດການເປັນເອົາ of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri proportional to the number of bits	細 Steeding gy dissipation in T <u>In2 joules w</u> here 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is	~ ~ ~	
IEEE Personal A	principle the form Boltzma tempera directly p Authors Figures Referenc Keyword Metrics	i, the loss of one Sign Hort Adamine of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri- proportional to the number of bits	ዛሬ እድር በ	~ ~ ~	Follow
IEEE Personal A CHANGE USERNAME	principle the form Boltzma tempera directly p Authors Figures Reference Keyword Metrics	e, the loss of one Sign North Atentitie of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri- proportional to the number of bits ees s	ዛሬ እድር በ		_
	principle the form Boltzma tempera directly p Authors Figures Reference Keyword Metrics	e, the loss of one Sign North Atentitie of heat which is of the order of k n's constant (1.38056 x 10 ⁻²³ J ture at which computation is carri- proportional to the number of bits ees s	weißweißweigy dissipation in Inn2 joules where 'k' is K ⁻¹) and 'T' is the absolute ed out. Heat dissipation is lost during computation.	V V V Need Help?	Follow f in

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

https://ieeexplore.ieee.org/abstract/document/7724758

3/28/2021	A compa	rative study of	saline and non-sali	ne water in applica	ation of tomato y	vield by using photonic s	sensor IEEE Con	ference Publication.
IEEE.org	IEEE Xploi	re IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🌒
			Browse 🗸	 My Settings 	Help 🗸	Institutional Sig	n In	
				Institution	al Sign In			
	All		•				Q	
							ADVANCED SEARC	CH
Conferences >	2016 3rd Inte	rnational Confer	0					
A comp	arative	study of	f saline and	non-salin	e water ir	application		
		-	g photonic					
Publisher: IE	EEE [Cite This	Cite This	PDF				
Sandin Kumar	Pov · M Ha	arshitha ; Preeta	a Sharan All Auth	ore				
Sanup Ruman	1109, 101118			015				
43					<	Export to Collabratec Alerts	More Like This	
Full Text Views						Manage		e domain analysis of a ostrate patch antenna os and Propagation
						Content Alerts	Society Internationa Published: 2005	Il Symposium
						Add to Citation Alerts	bandgap characteri	e-domain analysis of stics of transversely
							probed hollow-core 2010 Photonics Glo Published: 2010	photonic crystal fibers bal Conference
Abstra	ct							Show More
Document Se	actiona	Downl PDF						
» Nomenclatu		A b c f u c c f u c c d u c c d u c c d u c d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u d u		hatania ametalia		animum dia managant		
I. Introductior	2		nsor based on 2D p sensor can measu			•		
II. Theory	:	samples. As th	View more					
III. Sensor De	-	Metadata Abstract:						
IV. Tools Use	h		d on 2D photonic cr	ystal is proposed	and designed ir	n present work. Here		
Show Full Out			measure the small for fresh water and	-		the samples. As the		
Author	S	differentiate be shaped Photor	tween saline and n	on-saline water. T ator (PCRR) struc	he sensor is a E cture composed	Dual-hexagonal of Si rods		
Figure	S		ir medium. Here the gnetic equation pro	-	-	d modeled by using ing Finite Difference		
Reference	ces	simulation. Fro	FDTD) method. The m this spectrum, it	is observed that th				
Keyword	ds	and transmitte	d power. Hence it a	cis as a sensor.				
Metrics	0	Published in: Development (nal Conference or	n Computing for	Sustainable Global		
More Like		Date of Confe	rence: 16-18 Marc	h 2016 INSPEC	C Accession N	umber: 16426466		

3/28/2021	A comparative stud	v of saline and non	-saline water in an	plication of tomato	vield bv usin	a photonic sensor	IEEE Conference Publication

2021 A compa	rative study of saline and non-saline water in application of tomato yield by using photonic sensor IEEE Conference Publication									
	Date Adde 2016	d to IEEE Xplore: 31 October	Publisher: IEEE							
	ISBN Infe Electro DVD IS Print o	ormation: onic ISBN:978-9-3805-4421-2 SBN:978-9-3805-4420-5 on Demand(PoD) 978-1-4673-9417-8	ndia							
		i≣ c								
	Nomenc FDTD									
	MEEP-	fference Time Domain tromagnetic Equation Propagati Sign in to Contir								
	MIT-	sign in to Contin								
	PCRR- Photonic	Crystal Ring Resonator								
	Authors			~						
	Figures			<u>~</u>						
	Referenc	es		<u>~</u>						
	Keyword	S		<u> </u>						
	Metrics			~						
IEEE Personal Acco	ount	Purchase Details	Profile Information	Need Help?	Follow					
CHANGE USERNAME/PAS	SSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060	f in ¥					

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

TECHNICAL INTERESTS

CONTACT & SUPPORT

3/28/2021		A photonic crysta	l based pressure	sensor IEEE C	Conference Publication	IEEE Xplore	
IEEE.org IEEE Xp	lore IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🔿
		Browse 🗸	My Settings 🗸		Institutional Sig	n In	
All Conferences > 2016 Inter A photonic cr			sensor			Q ADVANCED SEARC	:н
Publisher: IEEE	Cite This	Cite This	PDF	4	Export to		
77 Full Text Views				C	Collabratec Alerts Manage Content Alerts Add to Citation Alerts	measurements IEEE Transactions Measurement Published: 2006 Development of a M Bend Loss Sensor Measurement	ber sensor for pressure on Instrumentation and dicrofabricated Optical for Distributive Pressure
Abstract Authors	Downl PDF					IEEE Transactions Engineering Published: 2008	on Biomedical Show More
Keywords Metrics More Like This	temperature, stru photonic detect Metadata Abstract: Photonic detecting stress detecting detecting technol MOEMS based in micron variety si item will modify to result, this altern surf that passes modification can	nic detecting technic ess detecting for his . View more ng technologies ha for huge selection logical innovation i micro-sized stress zing modify using t the sizing of the wa lation in space can through them that directly be planner using photonic ama	ve extended physo of applications. T is to observe the indicator can be of the photonic ama aveguide designe alter the reprodu is changing the tr d to stress on the	sical parameter he process of th modification of i developed to ide zingly. The appl d in the photoni iction feature of ransmitting varie	e process of the like temperature, ne photonic indicative catalog. entify even sub- ied stress on the c amazingly. As a electro-magnetic ety. So, this n this paper, the		
		016 International C chniques (ICEEOT)		ectrical, Electron	iics, and		
	Date of Confere	ence: 3-5 March 20			umber: 16497463		
			DOI: 10	.1109/ICEEOT.2	2010.1100444		

	ISBN Info Electro CD:976 DVD IS USB IS Print o	d to IEEE <i>Xplore</i> : 24 November ormation: bnic ISBN:978-1-4673-9939-5 3-1-4673-9936-4 SBN:978-1-4673-9937-1 SBN:978-1-4673-9938-8 in Demand(PoD) 978-1-4673-9940-1	^r Publisher: IEEE Conference Location: Chennai, India	
	Authors Keywords	S		× ×
	Metrics			~
IEEE Personal Account		Purchase Details PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	Profile Information COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS	Nee US & WOR CON

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Modular Phase DC-DC Convertor with Soft Switching High Frequency Isolation in Series and Parallel Output

¹Veena A P, ²Nisha C Rani ^{1,2}Department of EEE, TOCE, Bengaluru

Abstract -A new power transmission and distribution system concept for HVDC is Modular stacked DC architecture. Presently high frequency isolated DC-DC power conversion has special interest in high power applications. The two essential requirements of these high power applications are high reliability and high power density. The Modular stacked architecture fulfil this requirements .Its main application is in subsea oil and gas fields where the reliability and retrieval are the most critical requirements. The subsea oil and gas fields searching better way of power delivery to the loads without significant increase in the overall system cost. So a suitable system for subsea power transmission and distribution system is Modular stacked with soft switching and high frequency isolation. In this project series connection is preferred at input side and parallel connection is preferred at output side. This arrangement is used to improves voltage blocking capability at the input side and to reduces the current ripples at the output side. The basic building block is Zero current switching full bridge phase shift DC-DC converter. In this architecture fault detection techniques are used for continued operation of the converter.

Key words: subsea power distribution, high frequency isolation, current ripples.

I. INTRODUCTION

Presently DC-DC converter with high frequency isolation is having more attentions in renewable energy sources due to their compact size and power density. In this project high frequency isolation dc-dc converter is using in subsea oil and gas fields for transmission and distribution system. The subsea oil and gas fields have many technical challenges like long distance power transmission .Here huge power is transmitted over long distance. For this dc transmission is better and efficient than ac transmission. When high power loads distributed in long distance ac transmission creates severe problems and charging current flows along the ac cables due to the capacitance of the cable. This decreases cable capacity for carrying useful current. When the length of the cable is long then it has high capacitance and high charging current. So by considering the above factors dc transmission is more suitable for subsea power system as compare to ac. Converters are required to connect HVDC system . The component that enables the converter process is used Insulated gate bipolar transistors(IGBT) or thyristors. These controllable switches can carry very high current and are capable to block very high voltage upto 10 kv.

Conventional HVDC system in subsea power system results in large size and high count of component limit application and it has many disadvantages. So a promising system topology for subsea power system is modular stacked method. This consists of cascaded connection of three level converters. The main disadvantage of this method is frequency, here low frequency subsea transformers make system larger in size and it also decreases the reliability. So the main aim of this is to replacement of low frequency DC-DC converter with high frequency isolated converters. Which results in smaller size and efficient operation of system. In this paper converter analysis, fault the detection and fault tolerance operations are discussed with simulation and experimental results.

II. PROPOSED SYSTEM

The basic block diagram of the proposed system is shown below. Which implies the basic operation of proposed system.

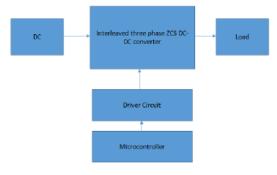


Figure1: basic block diagram of proposed system

The above block diagram gives the brief idea about the operation of the proposed system. Which consists of input as dc source and is given to the main building block that is interleaved zero current switching dc-dc converter. It consists of IGBT or thyrister as switches at the primary side and at the secondary side diode rectifier is connected. And transformer having a 1:1 turns ratio. In this system microcontroller is used to generates the

pulses but these pulses are having insufficient voltage to drive the load. Because microcontroller having only 5 v. So the driver circuit is introduced here to drive the load. This circuit amplifies the pulses from 5v to 12v which sufficient to drive the load. In this interleaving is used to decreases the ripples of the voltage and currents at the dc link. Finally output of the converter is given to the load.

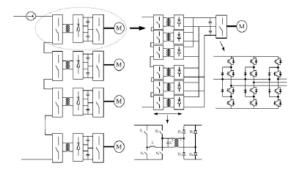


Figure 2: Block diagram of three phase inverter for power conversion system

The above block diagram shows the three phase inverter for the power conversion system. Basically conversion system used here is dependent on the two level dc-dc converter with high frequency isolation. Very low to high ranges power levels are there in two level system. Power conversion uses the three level inverters at the output side. In this each leg is consists of four IGBT switches namely Q1, Q2, Q3, Q4 in series connection. Leg is completed only when the two clamping diodes are added to the each leg.

It produces the output as three voltage levels. They are positive bus voltage, zero voltage and negative bus voltage. For single phase when switches Q1 and Q2 are closed then the output is connected to positive bus voltage, When Q2 and Q3 are on then output is connected to zero voltage, and when O3 and O4 are turned on then output is connecting to negative voltage. Here series connection is implemented for input ports and parallel-series connections are implemented for the output ports. This arrangement gives the necessary dc link for the inverter. Depending on the ratings of current and voltage of the transmission line, the number of modules are decided. It is a current fed circuit at the input side and having full bridge zero voltage current switching circuit with switching frequency of 20 kHz. In two legs two adjacent switches having phase shift which can be controlled for the output voltage regulation. The switches in the full bridge circuit at the primary side must have a ability to blocks the voltage. Due to presence of galvanic isolation flexibility is obtained in designing part and in output stage interconnections.

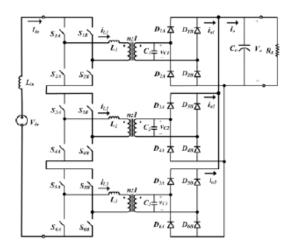


Figure 3: ZCS three phase DC-DC converter

The above circuit diagram shows three phase dc-dc converter. Each module is full bridge dc-dc converter. These full bridge switches must have voltage blocking capability at the primary side. For this purpose modules are connected in series. It is similar to normal boost circuit operation .In single module four switches are connected in full bridge circuit at the input side and diode rectifier circuit is present at the secondary side for rectification purpose. Here isolation is provided between primary and secondary circuits. The below diagram shows single module of the proposed system. These modules are cascaded and connected in series and parallel to the input and output respectively. It operates equivalent to the basic boost converter, but the only difference is, phase shift is introduced in the module which is helpful to controlling the power flow in the system.

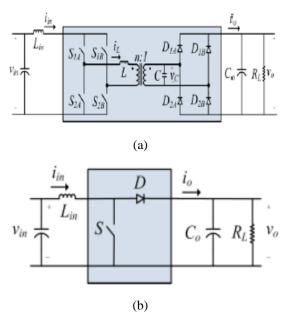


Figure 4:(a) full bridge phase shift ZCS converter (b) basic boost converter

Because of high power applications in this current fed converter is preferred since advantages are more in current fed converters as compared to voltage fed converters. In voltage fed converters transformer turns ratio is very high so parasitic components produces the high voltage and current spikes which creates switching loss problems in the circuit. This problem is overcome by zero current switching operation. Regulation of output is done by variable frequency control operation, from this we can reduce the size and mass of the converter. Increasing switching frequency results in increased switching losses so soft switching techniques are used to eliminates the switching losses and it will improves the efficiency also. DC –DC converter uses the leakage inductance and parasitic capacitance which shown in fig 4 above.

III. STEADY STATE ANALYSIS

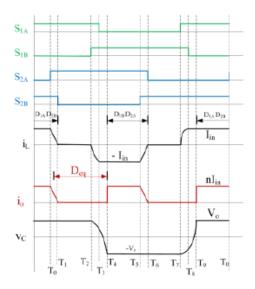


Figure 5: Proposed three phase converter for single module waveforms

Figure 5 shows the steady state waveforms of the proposed converter. Here switches S_{1A} , S_{1B} consists of complement gate signals with little overlapping portion. Zero current switching utilized this portion for ZCS operation. In converter power flow controlling is done by phase shifting the lower leg gate signals with gate signals of upper leg switches. i.e S_{2A} , S_{2B} gate signals are phase shifted with S_{1A} and S_{1B} .

Analysis of steady state converter operation for developing the simple model is done for system level simulation. It considers the zero current switching effect. Resonant frequency ω_0 and characteristic impedance Z_0 of the LC circuit is given as follows

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
$$Z_{0=\sqrt{\frac{L}{C}}}$$

Where L and C are inductor and capacitor of the resonance circuit.

Normalized input current J_{in} is defined as

$$J_{in} = \frac{Z_0 I_{in}}{V_0}$$

Where I_{in} is the input current and $V_0 \ \ \, \text{is the output voltage}$

The interval by interval analysis is help to calculating the interval length in terms of normalized current and resonant parameters.

The first, third and fourth intervals length can be calculated by analysing the circuit within that interval. In first interval switches S_{1A} , S_{2A} and S_{2B} are on the inductor and load current decreases and capacitor voltage is maximum in this interval. In second interval i_L and i_0 becomes zero and V_c remains at the maximum voltage. It is control parameter duration when the gate signals are phase shifted this sets the interval. In the third interval S1A, S1B,S2A are closed. IL current goes negative gradually and i₀ remains in the zero current only, the voltage V_c starts decreasing slowly. In the fourth interval switches S1B,S2A are on inductor current reaches to negative of the input current, output current increases and V_c reaches to negative of the output voltage. The fifth and final interval is calculated using constant frequency switching taken into account. i_L and V_c are in the negative phase only but i₀ reaches its maximum value. From the figure 5 it can be seen that in second and fifth interval converter operation is more so it is equivalent to boost converter operation i.e on state and off state of the switches. The below table 1 gives details of the intervals conduction in steady state operation.

Table 1: summary of intervals conduction

Mode	Conducting devices	$i_L(t)$	<i>v_c(t)</i>	ω _o T _{ij}
$I: [T_0 - T_1]$	$S_{1A}, S_{2A}, S_{2B}, D_{1A}, D_{2B}$	$\frac{-V_o}{L}(t-t_0)+I_{in}$	V _o	Jin
$II:[T_1-T_2]$	S ₁₄ , S ₂₄	0	Vo	-
III: $[T_2 - T_3]$	S ₁₄ , S ₁₈ , S ₂₄	$\frac{-V_o}{Z_o} \sin(\omega_o(t-t_0))$	$V_o \cos(\omega_o (t_{\rm g} - t_2))$	$sin^{-1}(J_{in})$
$IV: [T_3 - T_4]$	S ₁₈ , S ₂₄	$-I_{in}$	$\frac{-l_{in}}{C}(t_4 - t_2) + V_o \cos(\omega_o(t_2 - t_2))$	$\frac{1}{J_{in}} \left(1 + \sqrt{1 - J_{in}^2} \right)$
$V: [T_4 - T_5]$	$S_{1B}, S_{2A}, D_{1B}, D_{2A}$	$-I_{in}$	-V _c	-

The model investigation and waveforms of the converters gives the following formula for duty cycle of basic boost is given below

$$D_{eq} = \frac{T_{01} + 2(T_{12} + T_{23} + T_{34})}{T_c}$$

Where $T_{ij}=T_j-T_i$, i=0,1,2,3 and j=i+1

And T_j is switching instant.

Waveforms of the output current is almost square wave if the duration of small overlap is neglected. By adjusting the phase shift of gate signals we can control the duty cycle of the square waveforms. Duty cycle of the converter and number of modules decides the current ripple of the output. In this we are using duty cycle of 2/3 which makes the output current ripple free. Fault detection circuit is proposed in this project. It is very advantages to the subsea power system. The circuit arrangement is shown in below figure 6.

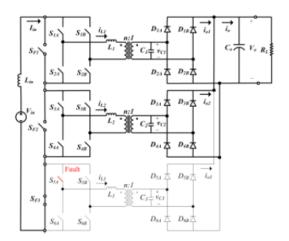
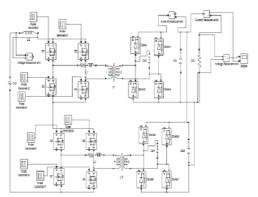


Figure 6: Fault detection arrangement for three phase dc-dc converter

Reliability, high power density, maintainability, and fault tolerance are essential requirements for the subsea power system. This proposed system is having high reliability so we can concentrating on the faults occurs in the modules. Proper techniques are designed to fast detection of the faults and continued operation of the system when fault occurs in the one module.

The above figure 6 shows the arrangements for the fault detection in this circuit we are adding bypass switches S_{F1} , S_{F2} , S_{F3} at the primary side when fault is occurred in the one module that module is disconnected and bypassed switches will be activated for continued operations. In this case converter is operating in CCM Mode and input is almost constant in the normal case with the 50% duty cycle. Current wave forms of this switches are square wave in this fault detection circuit fault is found when sampling frequency is greater than the switching frequency. When this happening the circuit duty cycle changes to less or greater than 50% then the fault flag is set and additional bypass switch is closed and it starts next period of fault detection.


IV. RESULTS

The simulation results for the proposed system is given below. And laboratory prototype specifications are given in table 2.

Table 2: Laboratory prototype specifications

Items	Values
Switching frequency	20KHz
Nominal load power	3kW
Nominal input	300V
Nominal output	150V

1Fig: simulation for cascaded module

The above simulation circuit shows the cascaded three phase ZCS dc-dc converter connected with pulse generators which provides the phase shift to the gate signals. Here ,output current and voltages are measured. The simulating waveforms for this circuit is given below.

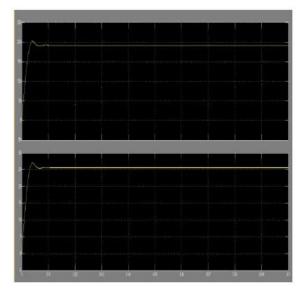
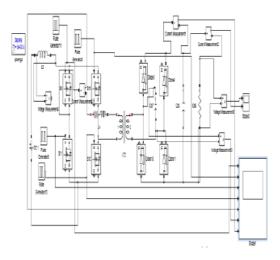



Fig 7: simulation for cascaded circuit

2 fig: Simulation for the single module circuit

The above simulation circuit is for the single module of the proposed system. Here, we got the pulse waveforms with phase shift, inductor current, output current, and capacitor voltage waveforms. And output voltage and current for the single module. The simulation waveforms for the above circuit is shown below.

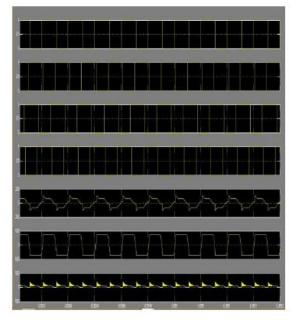


Fig 8:single module circuit

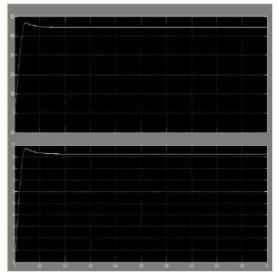


Fig 9:single module voltage and current waveforms

The closed loop operation of the proposed system is shown below. The closed loop system is more advantages than the open loop system. In closed loop system we can get the required output voltage without using the pulse generators. Here, the reference voltage is set that voltage is compared and generates the error voltage. output of the comparator given to the PI control that sets the duty cycle and it is compared with saw tooth waveforms, and generates the PWM pulses. The simulation circuit for the closed loop operation is shown below.

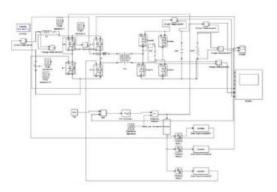


Fig: closed loop zcs converter

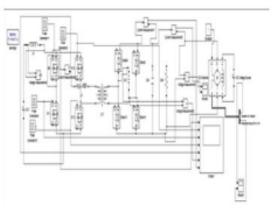

The simulation waveforms for above showed closed loop circuit is given below which gives the constant voltage and little bit vary in current values. For example the reference voltage value is 200 volts means the output of the module gives nearly 200 volts.

Fig 10: closed loop voltage and current waveforms

I. Modified Phase Shift Full Bridge Zcs Converter

The proposed system is modified by replacing the resistive load with dc motor load. From the output of the proposed converter we can run the dc motor. Which gives required speed. This modification is shown in the below diagram.

The simulation of this motor load circuit is shown below

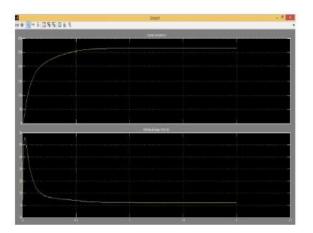


Fig 11: speed and torque of the dc motor

V. CONCLUSION

Modular phase high frequency isolation design architecture provides the high reliability and high power density. The proposed system is applicable in subsea power distribution system. It is simple but efficient model. The faults detection techniques also helps to improves the overall efficiency of the system. Modified circuit is used in the different high power applications. Simulation results are verified and observed.

REFERENCE

 "Series input parallel output Modular Phase dcdc converter with soft switching and high frequency isolation" DOI 10.1109/ TPEL. 2015.2398813, IEEE Transaction on Power Electronics

- [2] H. Fan and H. Li, "High-frequency transformer isolated bidirectional dc-dc converter modules with high efficiency over wide load range for 20 kva solid-state transformer," IEEE Transactions on Power Electronics, vol. 26, pp. 3599-3608, Dec. 2011.
- [3] S. Inoue and H. Akagi, "A bidirectional isolated dc-dc converter as a core circuit of the nextgeneration medium-voltage power conversion system," IEEE Transactions on Power Electronics, vol. 22, pp. 535- 542, Mar. 2007.
- B. Zhao, Q. Yu, and W. Sun, "Extended-phaseshift control of isolated bidirectional dc-dc converter for power distribution in microgrid," IEEE Transactions on Power Electronics,, vol. 27, pp. 4667-4680,Nov. 2012.
- [5] Series input parallel output Modular Phase dc-dc converter with soft switching and high frequency isolation" DOI 10.1109/TPEL.2015.2398813, IEEE Transaction on Power Electronics
- [6] H. Fan and H. Li, "High-frequency transformer isolated bidirectional dc-dc converter modules with high efficiency over wide load range for 20 kva solid-state transformer," IEEE Transactions on Power Electronics, vol. 26, pp. 3599-3608, Dec. 2011.
- [7] S. Inoue and H. Akagi, "A bidirectional isolated dc-dc converter as a core circuit of the nextgeneration medium-voltage power conversion system," IEEE Transactions on Power Electronics, vol. 22, pp. 535- 542, Mar. 2007.

 $\otimes \otimes \otimes$

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298743987

Propyl 4-(3-oxo-1, 3-dihydro-2H-benzo[g]indazol- 2-yl) Benzoate an Novel Bioactive Compound Isolated from Streptomyces Species, RHC-1 Isolated from Soil of Western Ghats, Karnataka...

Confere	ence Paper · March 2016		
CITATIONS	S	READS	
0		348	
3 autho	rs, including:		
	Bukkambudhi Krishnaswamy Manjunatha		Praveen KUMAR S V
A	The Oxford Educational Institutions	\sim	Visvesvaraya Technological University
	66 PUBLICATIONS 849 CITATIONS		27 PUBLICATIONS 223 CITATIONS
	SEE PROFILE		SEE PROFILE
Some of	f the authors of this publication are also working on these related projects:		
Project	M.Sc. Project Lichens View project		

Bioremediation View project

Proceedings of the 10th INDIACom; INDIACom-2016; IEEE Conference ID: 37465 2016 3rd International Conference on "Computing for Sustainable Global Development", 16th - 18th March, 2016 Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Propyl 4-(3-oxo-1, 3-dihydro-2*H*-benzo[*g*]indazol-2-yl) Benzoate an Novel Bioactive Compound Isolated from Streptomyces Species, RHC-1 Isolated from Soil of Western Ghats, Karnataka, India

Manjunath B K Department of Biotechnology, The Oxford College of Engineering, Bengaluru, Karnataka, INDIA Email ID: professorbkm@gmail.com Praveen Kumar S V Department of Biotechnology, The Oxford College of Engineering, Bengaluru, Karnataka, INDIA Divakara R Department of Biotechnology, The Oxford College of Engineering, Bengaluru, Karnataka, INDIA

Shridhar A H

Department of Chemistry, SVM Arts Science and Commerce College Ilkal-587125, Karnataka, INDIA.

Abstract - The antibacterial potency was studied for the isolate RHC-1, isolated from soil samples of Western Ghats of Karnataka, India. The isolate RHC-1 was identified as Streptomyces spp. 13636G based on the 16s r DNA genomic sequence and the bioactive compound of ethyl acetate extract of RHC-1 was predicted as propyl 4-(3-oxo-1, 3-dihydro-2Hbenzo[g]indazol-2-yl) benzoate based on the mass spectral, IR and NMR studies. The RHC-1 showed significant activity against both gram positive and negative bacteria. The present study discloses that, the potency of the isolate for the expansion of a novel antibacterial drug possessing ability.

Key words: Western Ghat's; Streptomyces; Antimicrobial; 16s r DNA sequence.

I. INTRODUCTION

Actinomycetes are the major promising sources for the bioactive compounds with agricultural and pharmaceutical prominence. They belong to the order Actinomycetales and they are Gram's positive, filamentous eubacteria with higher G+C content ^[1]. The metabolic diversity of actinomycetes owing their importance in the antibiotic production along with the other bioactive metabolites like lytic enzymes, plant growth promoters, herbicides, insecticides, and antitumor agents ^[2]. Hence they are considered as industrially treasured prokaryotes since they have produced a huge amount of compounds of pharmaceutical and agricultural significance ^[3, 4, 5, 6]. Approximately among in the 150 described actinomycetes species, a very few are accountable for the majority of over 25,000 microbial products recognised so far ^[7]. In specific, the genus Streptomyces accounts for about 80-85 % of the actinomycetes products reported ^[8]. The assortment of natural

N S KUMAR

Defence Bioengineering and Electromedical Laboratory (DEBEL)-DRDO, Bengaluru, Karnataka, INDIA.

actinomycetes has extraordinary importance in numerous extents of science and technology, around 60-70% of naturally occurring antibiotics with of medical significance are from actinomycetes ^[9]. The diversity of secondary metabolites produced by Actinomycetes is unrevealed and unmatched in medical significance ^[10]. The findings of novel actinomycetes from different territory with distinctive metabolic activity will often leads to the discovery of new antimicrobial agent. Several studies reported that, now a day about 60-70 % of the bacteria that cause infections in hospitals are resistant to at least one of the drug most frequently used for the treatment. Recent studies showed that few microbes are resistant to numerous antibiotics and it is an alarming increase in resistance of pathogenic microbes which is responsible for the community acquired infections and also causes diseases and mortality^[11]. In order to overcome this problem, research and development in the search of novel antibiotics for all the resistant strains using effective drugs ^[12]. This frightening state demands search of novel bioactive compounds having ability to act against drug resistant pathogens. In the present study, we made an effort to isolate novel actinomycetes species from soils of Western Ghat's region having antimicrobial potency.

II. MATERIALS AND METHODS

A Collection of Soil Sample and Isolation Actinomycetes:

The soil samples were collected from the different localities of Western Ghats region of Karnataka State in sterile sample containers by following the method by Kekuda et al.,^[13]. The pure colonies of actinomycetes were isolated from preprocessed soil sample using Actinomycetes Isolation Agar by following pure culture techniques. The pure colonies are sub cultured on GAA (ISP-5) slants and stored at $4^{\circ}C^{[14]}$.

B Morphological features and microscopic and biochemical characters of the isolate RHC-1:

The strain RHC-1 was inoculated on various media namely ISP-3, ISP-4 and ISP-5. Colony characteristics and production of diffusible pigments for the isolate was recorded. The distinguishing arrangement of spores was studied according to the method followed by Akshatha *et al.*, ^[14]. by the slide culture technique. Gram's nature and biochemical characteristics for the isolate RHC-1 was studied according to the method followed by Aneja, 1996^[15], Florencio, 2012^[16].

C Primary antibacterial screening of the actinomycetes isolates:

In order to screen the antibacterial activity of the isolated actinomycetes, perpendicular streak method was followed ^[17].

D Production and extraction of bioactive secondary metabolites:

The production of secondary metabolite from the isolate RHC-1 was observed by inoculating the sporulated culture into Yeast Extract Malt Extract broth (YEMEB). The culture filtrate from the YEMEB was subjected to centrifugation and the obtained supernatant was extracted using ethyl acetate solvent according to the method followed by Kekuda *et al.*, ^[13] Akshatha *et al.*, ^[14]. The obtained crude extract was used to screen for its antimicrobial potency.

E Antibacterial activity of ethyl acetate extract of RHC-1:

Agar well diffusion method was performed by employing the method by Akshatha *et al.*, ^[14] to check the antibacterial potency of the ethyl extract of RHC-1. Six gram positive bacteria and nine Gram negative bacteria are inoculated on Muller Hinton Agar (Himedia-M173). Finally the bioactivity of the test isolate was determined by measuring the zone of inhibition (in diameter 'mm').

F Determination of Minimum Inhibitory Concentration (MIC):

Based on the results of antibacterial broad spectrum activity, the isolate was selected to determine the MIC. The lawn culture of the test pathogens was prepared by adjusting the cell density with 0.5 McFarland turbidity standards. The different concentration of the extract was loaded to corresponding wells 20 μ l, 10 μ l, 5 μ l, and 3 μ l respectively. The plates were incubated for 18-24 hrs. at 37° C. The minimum concentration producing the zone of inhibition was considered as MIC.

G 16s r RNA Sequencing:

The genomic DNA of RHC-1 was extracted by following the method Dasari *et al.*, ^[17]. The purity of the extracted DNA and its quantity was measured at 260 and 280 nm using spectrophotometer. The PCR amplification of 16s r DNA of RHC-1 was made using two primers: 27f (5 - AGAGTTTGATCCTGGCTCAG-3') and 1498r (5'-

GGTTACCTTGTTACGACTT-3'). The determined sequence was compared for its similarity level using the NCBI data base (ncbi-nlm-nih.gov) web site.

H Spectral studies for RHC-1:

The absorption spectrum of the extract was determined in the UV region (200-400 nm) using a UV-visible spectrophotometer (Thermo Evolution 201) according to the method Sahin and Ugur^[19].

Infra-Red spectra were recorded on Perkin Elmer-spectrum RX-1model spectrophotometer using KBr pellets. NMR spectra was verified by Bruker DRX 400MHz spectrometer and acquired on a Bruker Avance-2 model spectrophotometer using DMSO as a solvent and TMS as an internal reference.

III. RESULTS

Cultural characteristics and Microscopic study:

The cultural characteristics of the isolate RHC- 1, studied using three different media viz., ISP-3, ISP-4 and ISP-5. The growth was good on ISP-4 and ISP-5 whereas temperate growth was noticed on ISP-3. The colour of substrate and aerial mycelium varied in different media. The organism produced colonies with 3 mm diameter, entire, slightly umbonate colony with grey colored powdery mass of sporulation on ISP-5 with inhibition of neighbouring colony. The isolate produced good growth on ISP-4 medium. Colonies were 3 mm in diameter, entire and umbonate margin, bearing cream colored spores. On ISP-3 it showed poor growth when compared with colonies on ISP-4 & ISP-5, these colonies were minute, light cream colored, entire, elevated margin, with grey colored powdery sporulation. The organism was gram positive (Fig. 1), positive for starch hydrolysis, casein hydrolysis and lecithinase & lipase production. It is negative for gelatine hydrolysis and citrate utilization. Based on morphological and biochemical characterization of the organism it was found to be Streptomyces sp.

Preliminary antibacterial activity and MIC:

The ability of ethyl acetate extract of RHC-1 to impede bacteria was tested against 15 bacteria (Fig. 1). It was noticed that the Gram positive bacteria shows maximum inhibition by the extract was high compared to Gram negative bacteria. Among Gram positive and Gram negative bacteria, high vulnerability to extract was shown by *S. aureus* and *K. pneumoniae* respectively. However, the inhibitory effect of extract was lesser than that of standard antibiotic and control (Fig. 1; Table 1). The MIC was determined against 2 bacteria *S. aureus* (10 μ l) and *K. pneumoniae* (10 μ l) and found to be 10 μ l for both the bacteria (Table 1).

Propyl 4-(3-oxo-1, 3-dihydro-2H-benzo[g]indazol-2-yl) Benzoate an Novel Bioactive Compound Isolated from Streptomyces Species, RHC-1 Isolated from Soil of Western Ghats, Karnataka, India

(b)

Fig. 1. (a,b)Preliminary antibacterial activity and MIC by ethyl acetate extract of RHC-1

 TABLE I.
 PRELIMINARY ANTIBACTERIAL ACTIVITY OF RHC-1

 AND MINIMUM INHIBITORY CONCENTRATION (MIC) OF RHC-1

The design of the second se	Zone of Inhibition (mm)			
Test organisms	RhC-1	Standard (Streptomycin)		
B. cereus	0	2.5±0.1		
P. vulgaris NCIM-2078	1.3±0.1	2.8±0.1		
S. marscences NCIM-2078	2.1±0.1	3.4±0.1		
B. coagulans MTCC-492	1.8±0.1	2.5±0.1		
E. coli MTCC- 1610	1.5±0.1	3.1±0.1		
A. baumanii NCIM-5152	2.2±0.1	3.5±0.1		
S. typhi MTCC-734	1.8±0.1	3.0±0.1		
P. aerogenosa MTCC-7296	0.0±0.1	3.4±0.1		
Micrococcus spp. NCIM- 2913	0	3.2±0.1		
B. megaterium MTCC-4912	0	2.9±0.1		
B. subtilis NCIM-2063	1.3±0.1	2.5±0.1		
S. sonii MTCC-2959	2.0±0.1	3.3±0.1		

MRSA	0.0±0.1	2.6±0.1
S. aureus NCIM-2079	1.7±0.1	2.9±0.1
P. putida MTCC-3316	1.5±0.1	3.4±0.1
K. pneumonia MTCC-4352	2.1±0.1	3.2±0.1

Test bacteria	Z	one of Inhib	ition i	n cm
Rhc-1	20µ1	10µ1	5µl	3µ1
K. pneumonia	0.8±0.1	0.5±0.1	0	0
S.aureus	1.0±0.1	0.3±0.1	0	0

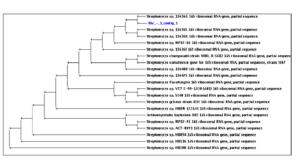


Fig. 2. 16s r DNA sequence data for RHC-1 and Phylogenetic tree

16s r DNA sequencing

The 16s r DNA sequence showed, total of 1446 bp, amplified fragments and its compared with the NCBI data base. The results showed about 96.3 % and 97.8 % similarity with *Streptomyces Sp. 13636G*. Using the related obtained data the Phylogenetic tree was constructed (Fig 2).

Spectral study:

The ethyl acetate extract of RHC-1 showed maximum absorption λ_{max} at 396 nm. IR (KBr) cm⁻¹ = 2915.8(-OH), 2849.8(CH₂), 1742 (C=O), 1638 (N=N), 1512(C=C) 90(Fig 9). ¹H NMR (DMSO) δ p p m= 7.3 (m, 8 H, Ar-H), 5.3(m, 1H, -NH), 3.4 (s, 1H, -OH), 2.1(S, 4H, -CH₂), 1.05(s, 3H, -CH₃) (Fig 11). MS m/z = 346 (M⁻) (Fig. 10).Anal. Calcd. For C₂₁H₁₈N₂O₃; C, 72.82; H, 5.24; N, 8.09 Found; C, 72.53; H, 518; N, 8.14. From the UV-Visible, IR, NMR and mass spectral data the structure of the isolate predicted as propyl 4-(3-oxo-1,3-dihydro-2*H*-benzo[*g*]indazol-2-yl)benzoate and the structure of isolate given in the Fig. 03-06.

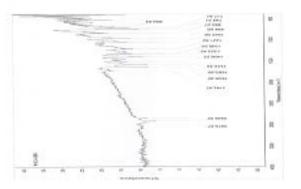


Fig. 3. IR spectra of RHC-I

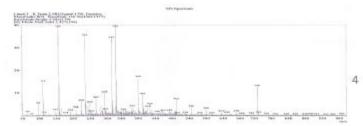


Fig. 4. MS spectra of RHC-I

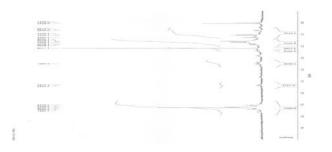


Fig. 5. H-NMR of RHC-I

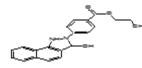


Fig. 6. propyl 4-(3-oxo-1,3-dihydro-2H-benzo[g]indazol-2-yl)benzoate

IV. DISCUSSION

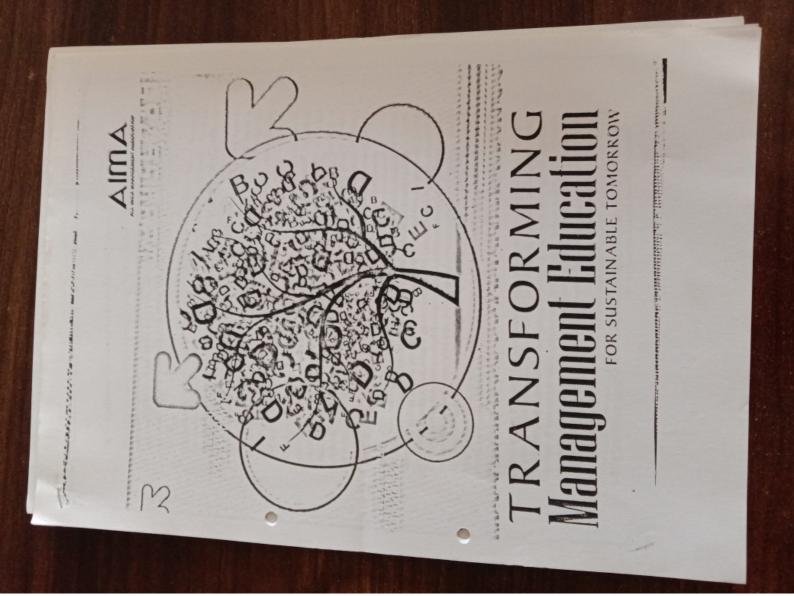
In this study we found that Gram positive bacteria were susceptible to high extent than gram negative bacteria. The lowest activity of ethyl acetate extract of RHC-1 against the gram negative bacteria, could be ascribed to the presence of an outer membrane that possess hydrophilic polysaccharides chains and forms an additional barrier for the entry of extract as well as antibiotics into the cells ^[19]. UV spectral studies showed absorption maxima (λ_{max}) at 396 nm and indicates the presence of the alkaloid and xanthone groups because most of bioactive compounds of which are subsiding under this range. The

genomic partial sequence of 16s ribosomal RNA gene, confirms the novel isolate RHC-1 is closely related to the Streptomyces spp. 13636G. The structure of the isolate were confirmed by the UV-Visible, IR, NMR and mass spectral studies, in the UV-Visible spectra the absorbance at λ_{max} at 396 indicated the presence of pi conjugation in the isolate. In the IR spectra absorbance at I cm⁻¹ 2915.8 indicate the presence of -OH, 2849.8 indicates the presence of aromatic CH₂, 1742 indicates the presence of C=O, 1638 indicates the presence of N=N and 1512 indicates the presence of C=C. In NMR spectra peak at δ ppm 7.3 indicate the presence of aromatic hydrogen atom, δ ppm 5.3 indicate the presence -NH within the five membered ring, δ ppm 3.4 indicate the presence of -OH, δ ppm 2.1 indicate the presence of aliphatic $-CH_2$ and δ ppm 1.0 indicate the presence of -CH₃. The mass of the compound found to be m/z = 346 (M⁻). From the above data the isolate predicted as propyl 4-(3-oxo-1,3-dihydro-2H-benzo[g]indazol-2-yl)benzoate. Further media optimization and strain improvement to be carried.

V. CONCLUSION

The RHC-1 isolate is a novel Actinomycetes strain obtained from the soil of Western Ghats region of Karnataka, India. The isolate shows conspicuous antimicrobial and antioxidant activity. Hence we conclude that the isolate RHC-1 is a potent strain closely related to *Streptomyces spp.* 13636G and presence of **propyl 4-(3-oxo-1, 3-dihydro-2Hbenzo[g]indazol-2-yl) benzoate** compound was predicted by IR, NMR and Mass spectra, having the antibacterial ability further off other biological assays was carried using the obtained compound.

ACKNOWLEDGEMENT


We express our deep gratitude to Chairman Sri. NarasaRaju, Executive Director Sri. Ramesh Raju, Principal Dr. Karibasappa and Dr. Kusum Paul Head, Dept. of Biotechnology, The Oxford College of Engineering, Bangalore for facilities to conduct work, kind support and encouragement.

REFERENCES

- Qin S, Xing K, Jiang JH, <u>Xu</u> LH, Li WJ. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology. 89(3):457-73, 2010.
- [2]. Adegboye MF and Babalola OO. Taxonomy and ecology of antibiotic producing actinomycetes. African Journal of Agricultural Research. 7(15); 2255-226, 2012.
- [3]. Ripa FA, Nikkon F, Zaman S, Khondkar P. Optimal conditions for antimicrobial metabolites production from a new *Streptomyces* sp. *RUPA-08PR* isolated from Bangladeshi soil. Mycobiology. 37(3), 211-214, 2009.
- [4]. Gonzalez-Franco AC, Robles-Hernandez L, Nunez-Barrios A, Strap JL, Crawford DL. Molecular and cultural analysis of seasonal actinomycetes in soils from *Artemisia tridentate* habitat, Int. J. Expntl Bot. 78, 83-90, 2009.
- [5]. Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production, World J. Microbiol. and Biotech. 25(4), 649-655, 2009.

Propyl 4-(3-oxo-1, 3-dihydro-2H-benzo[g]indazol-2-yl) Benzoate an Novel Bioactive Compound Isolated from Streptomyces Species, RHC-1 Isolated from Soil of Western Ghats, Karnataka, India

- [6]. George M, Anjumol A, George G, Hatha AAM. Distribution and bioactive potential of soil *actinomycetes* from different ecological habitats, *Afcn. J. Microbiol Res.*, 6(10), 2265-2271, 2012.
- [7]. Thenmozhi M and Kannabiran K. Studies on isolation, Classification and phylogenetic characterization of novel antifungal *Streptomyces* sp. *VITSTK-7* in India. Cur Res J Biol. Sci; 2:306-12, 2010.
- [8]. Bull AT, Stach JEM. Marine *actinobacteria*: new opportunities for natural product search and discovery. Trend Microbiol.15:491-499, 2007.
- [9]. Saha SS, Dhanasekaran D, Shanmugapriya S, Latha S. Nocardiopsis sp. SD5: A potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India. J.Basic Microbiology, 2012.
- [10]. Magarvey NA., Keller, JM., BernanV, Dworkin M, Sherman, DH. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol. 70; 7520–7529, 2004.
- [11]. Bisht R, Katiy ARA, Singh R, Mittal P. Antibiotic Resistance –A Global Issue of Concern. Asian Journal of Pharmaceutical and Clinical Research. 2 (2); 34-39, 2009.
- [12]. Stephen TO and Kennedy KA. Bacteria Resistance to Antibiotics: Recent Trends and Challenges. Int J Biol Med Res. 2(4): 1204 – 1210, 2011.
- [13]. Kekuda PTR, Shobha KS, Onkarappa R, Gautham SA, Raghavendra HL. Screening biological activities of a *Streptomyces* species isolated from soil of Agumbe, Karnataka, India, Int. J. Drug Development and Res., 4(3), 104-114, 2012.
- [14]. Akshatha MD, Manjunatha BK, Pooja R, Umesh TM and Sreevijeth R. Screening for Novel Antibiotic Producing Actinomycetes from Western Ghats of Karnataka State, India. Paripex - Indian Journal of Research. 2(3); 11-13, 2013.
- [15]. Aneja KR. Experiments in Microbiology, Plant pathology, Tissue culture and Mushroom cultivation, 2nd Edition, WishwaPrakashan, New Delhi, 1996.
- [16]. Florencio C, Couri S, Farinas CS. Correlation between agar plate screening and solid-state fermentation for the prediction of Cellulase production by *Trichoderma* strains, Enzyme Research, 2012.
- [17] Dasari VRRK, Nikku MY, Donthireddy SRR. Screening of antagonistic marine actinomycetes: optimization of process parameters for the production of novel antibiotic by *Amycolatopsis albavar. nov.DVR D4*, Journal of Microbial and Biochemical Technology, 3: 5, 2011.
- [18]. Sahin N, Ugur A. Investigation of the antimicrobial activity of some *Streptomyces* isolates, Turkish Journal of Biology, 27, 79-84, 2003.
- [19]. Singh SL., Baruha I and Bora TC. Actinomycetes of loktak habitat isolation and screening of antimicrobial activity. Biotech. 5 (2): 217-21, 2006.

A Competency Model for Determining the Profile of B-School Faculty in Bangalore

14

ANT IN SS

3 Dependent

A Sahana* Dr Vijila**

The primary focus of management education today is to develop the intellectual abilities of the studente, nurruring diem to align themotien und hindustry negatiremente. Rightly stud, the three pillure of higher education institution are, quality of floadly, inflastructure facilities and importance of analysing the competencies of B-school faculty. Competencies are underlying characteristics of people and indicate "usys of behaving or thinking, generalizing across karning environment. The responsibility of preparing the students for their future resis on the faculty of B-school as they are involved in corricula development, teaching content with appropriate methodology and technology. Faculty are also required to upgrade themselves with research, publications, consultancy and faculty development programmes. Thus it stresses on the no longer seen as job bolders with life long career prospects, but rather viewed as parkages of istuations, and enduring for a reasonaby long period of time. Very broudly competencies concess of knowledge, skills, abilitien that relate to the behaviour of an tradividual at the job. People are capabilities. A B-School faculty i job is not just reaching, it also include academic and This paper presents the preliminary findings of a study related to competency mapping of S administrative functions, also includes knowledge creation through researching and revealing and School faculty and in designing the competency model of the faculty.

Kepwords: Competency, Competency Model, Skilk, B. School Faculty.

INTRODUCTION

At present India is striving to compete in a globalized economy in areas that require highly trained professionals, and thus the quality of higher education has become increasingly programme that help a student become an effective manager. For the student to develop the capability to take decisions, his/her educational inputs play a vital role in moulding him. Experience which the students will derive from higher education is, to a large extent, important. Management is not just a subject or an academic discipline, it is a professional

 Asst. Prof., Dept of MBA, The Oxford College of Engineering. Bommanahalli, Hower Road Bangalore Scotoks. ** Director, KCT Business School, Coimbarore 641 049

WI CO MUTATION ALL TO THE PARTY OF

58 & Transforming Management Education for Sustainable Tomorrow

ATT BAL

dependent on the performance of the faculty, both as teachers and as researchers. Management education is the latest academic discipline to arrive in the world of academia, hardly hundred years worldwide and just about sixty years on Indian scene. It is today the most prefetred choice for higher education, among young men and women of the country (Agarwal, Swan 2010).

The primary focus of management education today is to develop the intellectual abilities of the students, nurturing them to align themselves with industry requirements. Academic practices should operate not only in the realm of teaching students but should also involve the functions of developing the faculty, associating practicing managers in devigning curriculum and establishing active relations with the business world. If a B-school wans to build a long term future, consistent improvement of quality is essential. Quality has to be operationalised in various parameters like: quality of input (faculty and infrastructure), quality in processes (active learning time), quality in outputs (tests and graduation scores) and quality in outcomes (gainful employment) (Harfield and Taylor, 1998). Enrichment through practical learning (Malmarugan and Prahhu 2005), competence for quality teaching (Gupta and Gollakota, 2005), faculty shortage (Kannan R Vijay, 2008), accreditation, promoting a research culture (Mayank & Dave 2007) are some of the serious challenges that need to be addressed. With the given challenges the responsibility of preparing the students for their future rests on the faculty of B-school as they are involved in curricula development, teaching content with appropriate methodology and technology. Faculty are also required to upgrade themselves with research, publications, consultancy and faculty development programmes.

Of the many B-school rankings conducted in the country every year, parameters stressed are infrastructure – physical, knowledge centers, teaching aids; education process – faculty, research, consultancy, publications and Management Development Programmes (MDPs) academic programmes – admission, curriculum, delivery systems; social responsibility, placement and industry interface. Most institutions are found to put up good infrastructure but not so in others factors. Moreover, the quality of an institute is not based on the level of infrastructure alone, but also on many more equally important factors. The worst area of performance among majority of B-schools has been the poor faculty and lack of research orientation (Sinha, 2007). Thus it stresses on the importance of analysing the competencies of B-school faculty.

VARIOUS DEFINITIONS OF COMPETENCY

According to Boyatzis (1982) Competency is a capacity that exists in a person that leads to behaviour that meets the job demands within parameters of organizational environment. and that, in turn brings about desired results.

According to Scott (1998) competency is (a) a cluster of related knowledge, attitudes, and skills that affects a major part of one's job; (b) that correlates with performance on the job. (c) that can be measured against well accepted standards; (d) and that can be improved via training and development. Facadry in Bungdone 4

99 Com

2 (e)

which that can be measured against well accepted standards and that can be improved su a major part of one's job in role or responsibility is that correlates with performance on a to behaviorburg to 1003, to a cluster of related knowledge, skills and unitades due of a A more devided definition symbolized from the suggrations of several hundred aspecthank house Decisionen who areaded a conference on the address of compose

Rankin (2002) describes competencies as 'definitions of skills and behaviours that equivalence expect their staff to practice in their work, and explains that mining and development (Party, 1996)

Competencies reprocent the language of performance. They can articulate both the cepected outcome run as maredual) chore and the namer in which these activities are carried out provide

of a period in that it may be a motive, a trait, a skill, an aspect of one's sell image or social According to Shukla (2009) Competency can be described as "an underlying characteria mone, unversally understood means of describing expected performance in many contexts.

role, or a body of knowledge which he or she uses

According to Tripathi et al. (2010) competency can be defined as the combination of in the process of knowledge transfer, knowledge creation and the knowledge services to the attributes such as personality, ability, knowledge and skills (PAKS) that help the institution

REVIEW OF LITERATURE

knowledge of the factors or competencies required for a given career; and 3) the closeness in which include aptitudes, abilities, interests, ambitions, resources, and limitations 21 match between the two. Thus, understanding the competencies and traits of B-School The importance of understanding competencies required for a career is authenticated by the Trait and Factor theory of career selection (Parsons, 1909). According to this theory, three factors concribute to a person's success and happiness in a career. 1) the person's transfaculty becomes essential for analysing performance and areas of development.

describe personal characteristics associated with job performance and motivation. The modern The term competence was used for the first time in 1959 (White, 1959), It is used to concept of competencies has been formulated in the work of the psychologist McClelland

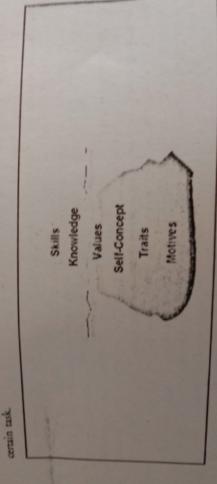
means the competence is a fairly deep and enduring part of a person's personality and tan predict behaviour in a wide variety of situations and job tasks. Casually related means that it causes or predicts behaviour and performance. 'Criterion-referenced' means that the competency actually predicts who does something well or poorly, as measured on a specific pencer and Spencer (1993) in their work Competence at Work have defined competency as an underlying characteristic of an individual that is casually related to criterion-referenced effecting and/or superior performance in a job situation.' An 'underlying characteristic criterion or standard 80 & Transformulty Afanagement Education for Statianable Tomastron

Competencies have some or all of these characteristics.

Cluster of knowledge, skills, abilities, motivation, beliefs, values and intercase,

Relate to a major part of the job; (3)

Associated with effective and/or superior performance. (19)


Observable and measurable against well-accepted standards: (e)

(P)

Linked to future strategic directions; and, 1

Can be improved via training and development (Cooper 2000; Parry 1996; Shipping ct al. 2000).

response to situations. Third, self-concept was ones attitudes, values. Fourth, knowledge responses finally, skill was the ability to perform a was information that one had in specific areas. Finally, skill was the ability to perform a certain goals and away from others. Second, traits were physical characteristics and consistence Spencer and Spencer, 1993). They identified five types of competency characteristical Spencer and Spencer and shill r. isting of motives, traits, self-concept, knowledge and skill. First, motives were the durage which one thought about or wanted the stimulate action. Motives drove behaviour toward blinkins Summer being model (Figure 6.1) there are five types of Competency characterized of time. Based on the lice-berg model (They identified five room of Competency characterized) Competencies are underlying characteristics of people and indicate ways of behaving or compositions across situations, and enduring for a reasonably long period of una-

FIGURE 6.1: ICEBERG MODEL

inefficient performers. The hidden part were the most difficult to develop and they were could be delineated between superior and average performers or between efficient and individual characteristics that could be measured or counted were in the visible part and Surface knowledge and skill competencies were relatively casy to develop and training was the most cost-effective way to secure those abilities (Spencer and Spencer, 1993). Any

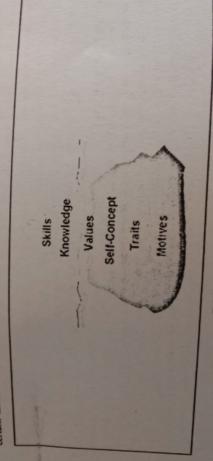
LM., Spencer, (1992). Lepsinger and Lucia (1999) suggest that for best performance the The various research works related the competency mapping is summarized in the following section. Competency as a list former

60 🌩 Transforming Management Education for Sustainable Tomorrow

Competencies have some or all of these characteristics:

operen-(a)

Relate to a major part of the job; (9)


Observable and measurable against well-accepted standards; Associated with effective and/or superior performance; (c)

Linked to future strategic directions; and, (P)

(c)

Lunse Can be improved via training and development (Cooper 2000; Parry 1996; Shippman ct al. 2000). (8)

certain guars and a structures of third, self-concept was ones attitudes, values. Fourth, knowledge responses to the specific areas. Finally, skill was the ability to perform a was information that one had in specific areas. (Spencer and set traits, self-concept, knowledge and skill. First, motives were the duings consisting of motives were the trimulare action. Motives 4. Based on the Spencer, 1993). They identified five types of competency characteristics (Spencer and Spencer and chill risk. consisting on thought about or wanted the stimulate action. Motives drove behaviour toward which use which and away from others. Second, traits were physical characteristics and consistent thinking generation of the are five types of Competency characteristics, Based on the Ice-berg model (Figure 6.1) there are five types of Competency characteristics Competencies are underlying characteristics of people and indicate ways of behaving or Competencies across situations, and enduring for a reasonably long period of time, thinking, generalizing across situations, and enduring the are five romes of Comments of time. certain task.

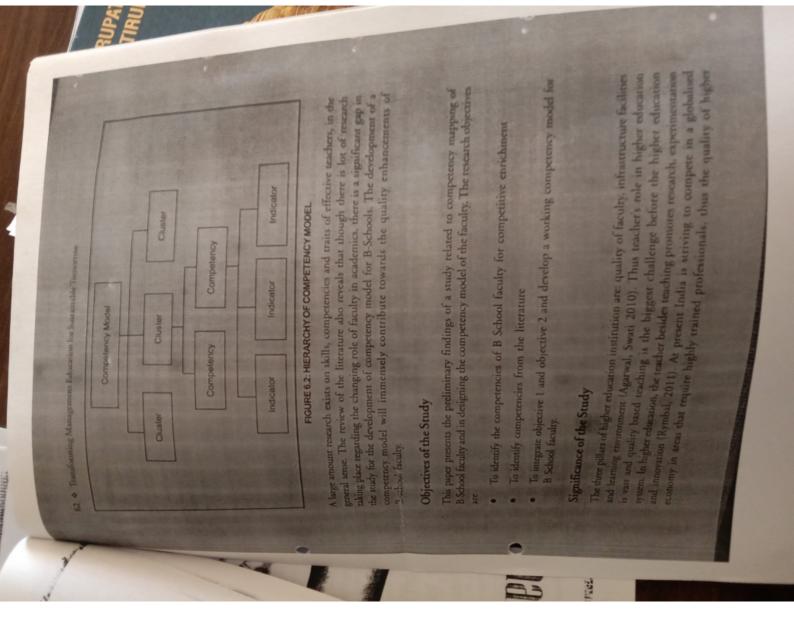
FIGURE 6.1: ICEBERG MODEL

inefficient performers. The hidden part were the most difficult to develop and they were could be delineated between superior and average performers or between efficient and individual characteristics that could be measured or counted were in the visible part and Surface knowledge and skill competencies were relatively casy to develop and training was the most cost-effective way to secure those abilities (Spencer and Spencer, 1993). Any

The various research works related the competency mapping is summarized in the following section. Competence at the following L.M., Spencer, (1992). Lepsinger and Lucia (1999) suggest that for best performance the

A Competency Model for Determining the Profile of B School Facality in Europhote & 64

competency model should not only identify the necessary shills and knowledge 'development model, competency map), but also define the expected outcomes of their performance (Chambers, Tony, 2002) analyzed the teaching paradigm for the development of facably (Austin, Ann E., 2002), identified the need for creating the bridge to the furture by properties new faculty to face changing expectation in shifting.


Srikanathan G (2003) developed an alternative perspectives for quality in higher odor actor through the quality management techniques. Hollmann and Elliott (2006) proposed a competency map (rather than a model), which describes how an individual can more beyond this or her current job posting. A theoretical framework for measuring competences that academic institutions was developed by Ranjan J. Tripathi P (2007). (Panjan J. Tripathi P 2008) presented an Empirical Study for the competence Management. Tripathi and Suc (2010) presented a competency model consisting of personal effectivenes, ability effective skills effectiveness and the knowledge effectiveness aspect of competencies to exprove the releance of the competencie from the industrial sector in education sector.

Rosenshine and Furst (1971) combined other research and identified five fundamental characteristics of effective teachers: clarity, variability, enthusiasm, student opportunity to learn material, and task oriented/business like behaviour. Suydam (1983) identified that effective teachers also offer encouragement, ertgage students minimize distractions and wasted time, establish and follow rules, monitor behaviour, give clear directions, and move through the classroom. Anundell and Richardson (1989) appendent that effective teachers use a variety of examples, effectively plan for instruction, and an knowledgeable of both subject matter and pedagogy. Young (1990) further added that effective teachers plan and execute interesting lessons using a variety of methods, monitor student learning and behaviour, and maintain rapport with students.

COMPETENCY MODEL

A competency model was a set of competency factors analyzed and generalized from the characteristics of superior performers at a certain job position. It could be applied to recruitment, employment, education and training, human resource management development and performance assessment. A model which could klewrify sompeteness and development and performance assessment. A model which could klewrify sompeteness and the between strategies and HRM (human resource management) were highly movied [link between strategies and HRM (human resource management) were highly movied [link competence and genetic competencies. They were used to identify the key suscess factors driving performance in organizations (Lucia and Lepsinger, 1990).

A competency model could divide a three-phase hierarchy into cluster, competency and indicator (Figure 6.2). Here, cluster was a group of competency factors in a specific occupational caregory. Competency factors were classified in accordance with the power or obs under the cluster. Indicators were assessment specifications under competency that observed and evaluated precisely (Wu and Lee, 2006). Drawing on the works of Boyatris (1982) and Spencer (1993). Crawford (2004) defined a model of competence that integrated knowledge, skills, demonstrable performance and core personality characteristic.

A Competency Model for Determining the Profile of B-School Faculty to Bangalore & 63

TURNING IN THEIR STREET

education has become increasingly important. Experience which the students will derive from the higher education is, to a large extent is dependent on the performance of faculty. both as teachers and researchers (Agarwal, Swati 2010).

Quantitatively teaching profession is the largest, India has six million teachers, with 5,5 million working at the school stage and 0.5 million at higher education it may be noted that reachers constitute a major portion of the working professionals (Rymbai, 2011).

services and activities which are undertaken by the educational institutions for implementing their programmes (Rymbai, 2011). Teachers need to improve knowledge and skills to In this present scenario, teacher's role also includes participating in management of various enhance, improve and explore their teaching practices (Selvi, Kiymet 2010).

METHODOLOGY

competency list. An expert panel (Head of Departments, senior Professors, Directors of various B-Schools) were administered the competency list along with an open ended question The available literature was examined to identify the competencies presented by various Jersey Institute of Technology competency dictionary, academic performance indices of National Board of Accreditation was also taken in to consideration for identifying the "What are the ideal competencies required by B-School faculty?" to extract as diverse response The purpose of this research was accomplished with multiple methods of data collection. researchers. Generic dictionary of Harvard University Competency Dictionary and New as possible. With the results of the expert panel a questionnaire was designed to determine the competencies of the B- School faculty. The questionnaire was administered to 40 faculties of different B schools. Table 6.1 gives the profile of the respondents of pilot study.

TABLE 6.1: PROFILE DISTRIBUTION OF RESPONDENTS

Gender Pr	rofessor	Asst. Professor	Lecturer	Total
Male	03	60	11	23
Female	02	20	08	17

FINDINGS

The findings of this study pertaining to the three objectives are presented together to generate a logical discussion about the competencies of B school faculty. It includes demographic details age, teaching experience, job responsibilities, gender, educational in Table 6.2. It describes the mean, standard deviations and Cronbanch's alpha co ethorem qualification etc. The general statistics pertaining to the competency variables are presented among the variables. 64 & Transforming Management Education for Sustainable Tomorrow

TABLE 6.2: GENERAL STATICTU

SI. No.	Variables	-		
1	Functional roles	Mean	S.D	Cronbanch Alpha
2	Knowledge undate	6.4	34	0.94
3	ICT skille	53.4	10.3	0.87
4	Evaluation obtin-	84	2.19	0.81
	Administration Skills	18.0	3.67	0.82
2	Administrative skills	4.0	2.55	0.81
0	Research & Consultancy	2.8	1.78	0.83
7	Resource activities	1.6	15	0.81
8	Networking	3.0	1 23	0.83
6	Teaching skills	4.2	23	0.80
10	Professional knowledge	3.3	14	0.84
11	Personal skill	4.6	2.5	0.79
12	Achievement orientation	4.7	2.9	0.81
13	Initiative	4.1	2.72	0.82
14	Information seeking	4.0	0.91	0.87
15	Interpersonal understanding	3.8	1.92	0.81
16	Customer service orientation	3.2	2.1	0.76
17	Impact and influence	4.7	2.7	0.84
18	Developing others	4.4	4.3	0.93
19	Team work and co-operation	3.9	1.87	0.80
20	Analytical thinking	6.2	2.97	0.89
21 0	Conceptual thinking	5.6	4.1	0.81
22 4	Professional expertise	4.4	3.2	0.72
23 23	Self control	3.6	1.69	0.88
24 5	Self confidence	3.7	2.1	0.75
25 F	Flexibility	24	19	0.82
T	Relationship building	3.9	1.3	0.83
27 C	Communication	5.7	2.7	0.81
28 A	Adaptability	2.7	1.2	0.70

22

(aline)

>

CONCLUSION

The review of the literature also reveals that though there is lot of research taking place regarding the changing role of faculty in academics, there is a significant gap in the study for the development of competency model for B-Schools. The development of a competency model will immensely contribute towards the quality enhancements of B school faculty. A major part of the existing research available has been related to analyzing the competencies of employees working in organizations. People are no longer seen as job holders with life long career prospects, but rather viewed as packages of capabilities. A B-School faculty's job

an metulati

a comprised his concerning the Public of the follow of the follow in theory for the produce in 155

a out put teaching it also includes academic and administrative functions, also includes a set an oralise duringly researching and consideranty. The current souly prevides the and for the development of competency model for the B.Scherdt facolity members.

Apprech Surah (2030). Taken Manugratan Madel for Busines School Factor Analysis, The Indian Jonanal of advantial Redramme, Vol 45, nor 3, sur 481-4911

sundell, A. B. Richardson, A. C. AVRIV, Characteristics of the effective surface as perceived by pupils and

ranten Anno & (2062), Creating a bridge to the future. Preparing new faculty to face changing expectations in infing routed. The terrier of Welfer Faluction, 16 (2), 119-144.

a spartin 2. (1998.1). The competent manufer A model for effective performance, New York: John Wiley & Sono.

Cambers Tany (2002), Helping audents find their place and purpose Tuny Chambers talks with Sharon Partie Alborat Campus 200-200.

Cooper K.C. (2000), Effective Competency Mudelling and Reporting. New York: N34.NCOM

Combacks. (2004). Senior management perceptions of projectmanogenerat components. You, J. Project M. acting. 23(127-16.

Capes, V. and Coll shores, K. (2005), Critical challenge for Indian buiness whools as partners in development. Decision, Vol. 32 No. 2, pp. 35-56. Hadded, L. and Taylon, R. K. (19918), Moderny business wheels responsion to consumers: Jesonic Jearned and actions. Matheming Educations Review, Vol. 8 No. 2, pp. 1-8 Gaman, & Way (2009), Businers Schools in Indiae Correct Childroges, Fatture Opportunities, Decision Line, October, 13-15. Retrieved November 2009 heighlwww.decisionteisence.org/decisiont/me/w/39/39-Main and 99 Similardi. Lucia, A. D., & Lepuinger, R. (19999). The an and Science of Competency Models: Forspoincing Critical Socies Future in Organizations, New York: Pleiffer.

Malmanupur, D and Prabhin Dr. NRN (2005). Sindents a Castomers, Effectione Executive, August, 43-44.

Mapurk, Guilea and Dave, Karik, (2007), Pravity of Jacaby, A Botheneck in the Growth of Manageneral Education in India, AUMS International, Vol. 1, no 3, 211-221.

McCheland, D. C., (1977 3). Teating for compresses rather than for intellingence. American Psychologics, 23,

Party 5 R. (1996). The Quest for Comperation, Testining, July

Parana, E. (1940), Chuning a meatine. Career Park, MD. Career Park Press.

Rannar J., Wigathi B. (2007). Decision Supporting System for the Competence Management. Proceedings of the Fina humanianal Conference on Information System Technology and Management, 2007.

Latin L. Wigalo R. (2008). Meaning Compension using Experisional Perspective Journal of Mountain and Applied Schormation Technology, 2008.

Robbins, No. (2002), Rationy Performance through People: The Mark Competency Survey, Competency and Interest in August Januar, 2.23

- a werden ist

a. Millin ra ala an

is not just reaching, it also includes academic and administrative functions, also includes A Competency Model for Determining the Profile of B-School Faculty in Bangalore & 65

a not pre-tourised for the treation through researching and consultancy. The current study provides the have for the development of competency model for the B-School faculty members.

Agawal, Swaii (2010). Talent Manugement Model for Busines School: Factor Analysis, The Indian Journal of Industrial Relations, Vol 45, no: 3, pg 481-491.

Anuadell, A. & Richardson, A. G., (1989). Characteristics of the effective teacher as perceived by pupils and teachers. A Caribbeau case study. (ERIC Document Reproduction Service No. ED 311 013).

Austin, Ann E. (2002). Creating a bridge to the future: Preparing new faculty to face changing expectations in hifting context. The Review of Higher Education, 26 (2), 119-144.

Bojatris, R. (1982). The competent manager: A model for effective performance, New York: John Wiley & Sons.

Chumbers, Tony (2002). Helping students find their place and purpose: Tony Chambers talks with Sharon Parks About Campus, 20-24.

Cooper, K C, (2000), Effective Competency Modeling and Reporting, New York: AMACOM

Crawford L (2004). Senior management perceptions of projectmanugement competence. Int. J. Project Manage. 23(1): 7-16. Gupta, V and Gollakota, K. (2005), Critical challenges for Indian business schools as partners in development. Decision, Vol. 32 No. 2, pp. 35-56. Hatfield, L. and Taylor, R.K. (1998), Making business schools responsive to customers: lessons learned and actions, Marketing Education Review, Vol. 8 No. 2, pp. 1-8 Kannan, R Vijay (2008). Business Schools in India: Current Challenges, Future Opportunities, Decision Line, Octoher, 13-15. Retrieved November 2009 http://www.decisionscience.org/decisionline/vol39/39-5/dsi-dl39_Sintl.pdf. Lucia, A. D., & Lepsinger, R (1999). The art and Science of Competency Models: Pinpointing Critical Success Factors in Organizations, New York: Pfeiffer.

Malmarugan, D and Prabhu Dr NRV (2005). Students as Customers, Effective Executive, August, 43-44.

Mayank, Giuka and Dave, Krtik, (2007). Pancity of Jaculty: A Bottleneck in the Growth of Management Education in India, AIMS International, Vol. 1, no 3, 211 - 221.

McClelland, D. C., (1973). Testing for competence rather than for intelligence. American Psychologist, 28.

Party, S.R. (1996) . The Quest for Competencies, Training, July

Parons, F. (1909). Choosing a vocation. Garrett Park, MD: Garrett Park Press.

Ranjan J., Tiipathi P. (2007). Decision Supporting System for the Competence Management. Proceedings of the First International Conference on Information System Technology and Management, 2007.

Ranjan J., Tripathi P. (2008). Measuring Competencies using Expert System: Educational Perspective. Journal of Theoretical and Applied Information Technology, 2008.

Rankin, N. (2002). Ruising Performance through People : The Ninth Competency Survey, Competency and Emotional Intelligence, January, 2-21, THE PARTICULAR REPORT

A Competency Model for Determining the Profile of B-School Faculty in Bangalore & 65

a not just reaching, it also includes academic and administrative functions, also includes a number determinent of comment of commentancy. The current study provides the trouver for the development of competency model for the B.School faculty members.

REFERENCES

Moural, Swati (2010). Talent Manugement Model for Business School: Factor Analysis, The Indian Journal of Moural of Action 2 and 2 a Industrial Relations, Vol 45, no: 3, pg 481-491.

Anundell, A. & Richardson, A. G., (1989). Characteristics of the effective teacher as perceived by pupils and nucher: A Caribbean case study. (ERIC Document Reproduction Service No. ED 311 013).

Auntin, Ann E. (2002). Creating a bridge to the future: Preparing new faculty to face changing expectations in abling context. The Review of Higher Education, 26 (2), 119-144.

Chambers, Tony (2002). Helping students find their place and purpose: Tony Chambers talks with Sharon Auyatin, R. (1982). The competent munager: A model for effective performance, New York: John Willey & Som-

Parks. About Campus, 20-24.

Cooper, K.C. (2000), Effective Competency Modeling and Reporting, New York-AMACOM

Cawford L (2004). Senior management perceptions of projectmanagement competence. Int. J. Project Manage

Gupta, V. and Gollakota, K. (2005), Critical challenges for Indian business schools as partners in deve lopments. 23(1): 7-16.

Haffeld, L. and Taylor, R.K. (1998), Making business schools responsive to customere. lesons learned and actions, Decision, Vol. 32 No. 2, pp. 35-56.

Marketing Education Review, Vol. 8 No. 2, pp. 1-8

Kannan, R Vijay (2008). Business Schools in India: Current Challenges, Future Opportunities, Decision Lints. October, 13-15. Retrieved November 2009 http://www.decisionscience.org/decisionline/wol39139-

Lucia, A. D., & Lepsinger, R (1999). The art and Science of Competency Models: Pinpointing Critical Success

Malmarugan, D and Prabhu Dr NRV (2005). Students as Customers, Effective Executive, August, 43-44. Burtors in Organizations, New York: Pfeiffer.

Mayank, Girika and Dave, Krtik, (2007). Paucity of Jaculty: A Bottleneck in the Growth of Management

McChelland, D. C., (1973). Testing for competence rather than for intelligence. American Psychologies. 28. Education in India, AIMS International, Vol. 1, no 3, 211 - 221.

Pury. S.R. (1996) . The Quest for Competencies, Training, July

Ranun J., Triputhi P. (2007). Decision Supporting System for the Competence Management. Proceedings of the Parsons, F. (1909). Choosing a vocation. Carrett Park, MD: Carrett Park Press.

First International Conference on Information System Technology and Managemene, 2007.

Ruim]. Triputhi P. (2008). Measuring Competencies using Esperi Spitem: Educational Perspective. Journal of The Theoretical and Applied Information Technology, 2008.

Runkin, N. (2002). Raising Performance through People : The Ninth Competency Survey. Competency 2nd Enum

Emonunal Intelligence, January, 2-21.

and all which for the state of
Dr. James Thomas, HOD MBA

The Oxford College of Engineering Bangalore, Karnataka

Dr. Ajit Dhar Dubey Asst.Prof. MBA The Oxford College of Engineering Bangalore, Karnataka

INVITATION FOR CONTRIBUTION OF PAPER

Dear Sir/Madam,

Greetings we are happy to inform you that there is an Edited Book with ISBN Number titled on "Business Sustainability" is going to publish from a reputed publisher very soon.

Sustainability has been on regular discussion since 1990s and being acknowledged widely for growing economy and hence development among the developed and developing countries. The government, NGOs, public sectors and other stakeholders are in worry, that how limited or slow development can be accelerated. This question is at everywhere. The demand of sustainability also becomes more necessary, when we compare it with fast growing population one side and limited known resources at other we compare it with fast growing population one side and manufacturing, industrial and software is playing vital role in socio economic development. The aim behind this book is supposed to find out the way for sustainability and how sustainable development can be performed? So, you are requested to submit your research in the form of qualitative or in quantitative research paper format and hence your contribution for India.

Proposed Title of the Book: Business Sustainability

- Sub-themes are:
- Marketing Management
- Business Environment
- Production & Operations Management

.

- Human Resource Management
- Financial Management
- Organizational Behaviour
 - Accounting
 - 0
- · Economics
- Strategic Management

- Project Management
 - Entrepreneurship
- Sales Management
- Service Marketing
- Industrial Relations
- Consumer Behaviour
- Education and Globalization
- Sustainable Tourism and Hospitality
 Learning & Development
 - Banking & Financial Services
- Investment Management
- Insurance
- Mininetti
- Supply Chain Management
 - Total Quality Management
 - Rural Marketing
- Leadership

Important Dates:

Full Paper Submission (through email) 30th August 2014 Email Confirmation for Full Paper 15th September 2014.

Registration 30th September 2014

Guidelines for paper Submission

Full paper should be not more than 15 pages including figures, tables and references.
 Title of the Paper (Font size 16 Times New Roman), Body of the paper: font size 12, Times New Roman, 1.5 Space, Justified paragraphs, margins of 1" on all the four sides, Body Text outline level, spacing of 6 before and after.

4. Name of the author, designation, affiliating organization, email id (font size 12) should not be sent separately as an additional attachment.

5. Check grammar and punctuation carefully. Give suitable titles and subtitles in bold. Soft copy of full paper must be emailed at drajitdubey@gmail.com For any queries, please send a mail to drajitdubey@gmail.com with the subject line "Clarification". 09739224764

Prof. Chikke Gowda. KG. Department of MBA. The Oxford College of Engineering Bangalore Prof. Chethan kumar KM. Department of MBA. The Oxford College of Engineering Bangalore, Professor, Department of Commerce, Banaras Hindu University, Varanasi, India Ex-Head, Department of Business Administration and Professor, Department of Prof. Raghavendra R. Department of MBA. The Oxford College of Engineering Bungalore Faculty Department of Business Administration and Professor, Department of School of Business & Management, National University, California Commerce, DDU Gorakhpur University, Gorakhpur, India Commerce DDU Gorakhpur University, Gorakhpur, India Harvard Business School, University of Harvard London Business School, London Prof. Kamlesh Mehta University of California Prof. Gabrielle Adams Prof. Patrick Barwise University of Michigan Prof. A. K. Tiwari Prof. H. K. Singh Stanford University Prof. R. P. Singh Prof. Faulkner D Prof. Torrington Editorial Team Prof. Mintzberg Editorial Board

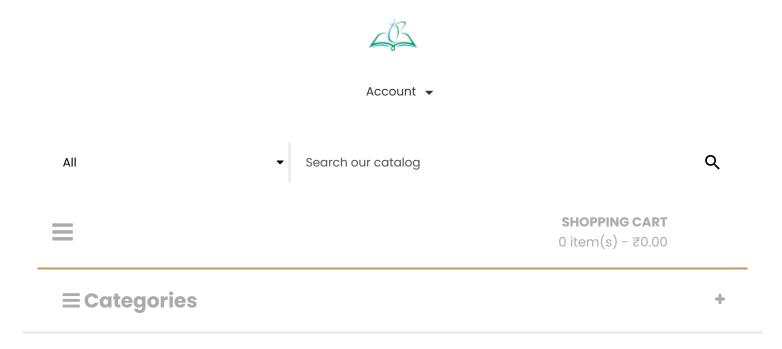
Managerial Communication

1

Dr. N. Babitha Thimmaiah P. Chandrika Reddy

Scanned by CamScanner

nnolor


MBA 1stSem

DI

Printed at: Savera Printing Press, Jankipurarn, Lucknow, Mob. 9235318506/07 Visvesvaraya Technological University, Mysore. She has 16 years of teaching experience and corporate training. She has been teaching various courses in the areas of Financial Management, Accounting for Management, Management Accounting, Tax her Ph.D. She has also achieved ISTD Diploma in Training & Development. She has 16 years of experience in teaching and industry. She is presently serving as Associate Professor in The Oxford College of Engineering, Bengaluru. She has taught various subjects like Management and Behavioural Process. Human Resource Management, Marketing Management, Managerial Communication. She has presented and published more than 20 Papers in various National and ISBN: 978-93-86232-83-0 of Capital Structure Practices of Corporate Organization in India. She has Mrs. P. Chandrika Reddy has done B.Sc, MBA, M.Phil and is currently pursuing She has acquired her Ph.D degree in Finance on the topic "An Empirical Evaluation" specialisation in Finance and Marketing. She is currently working as Assistant Professor al Department of Business Administration, PG-Centre, is enriched with exercises and solved papers to facilitate proper understanding of the subject. This book is a valuable volume for students, teachers and others who are interested in learning of This book of 'Managerial Communication' provides in-depth information about various basic concepts related to communication in business, mechanics of writing, and negotiation. The book is encided with the second s Dr. N. Babitha Thimmalah has done M.Com, MBA and has qualified UGC-NET. Management & Organisational Behaviour Dr. Sathyanarayana Babu B V, Dr. Sneha Ravindra Kanade Dr. N. Babitha Thimmaiah, P. Chandrika Reddy managerial communication, media management, and employee communication. International Journals and has also attended various Conferences and Seminars. Visvesvaraya Technological University MBA - 1st Semester Dr. Nagarajan Govindachari, Raghu G Author Name Dr. Girish. C, Tejas B Was Dr. Surekha. I. Prabhu Suresh A. S 12 X = 1 Subject Name Managerial Communication Accounting for Managers Economics for Managers Marketing Management MRP: ₹180 Quantitative Methods THAKUR PUBLISHERS About the Book Management, etc. www.tppl.org.in BENGALURU akur Ers [aund

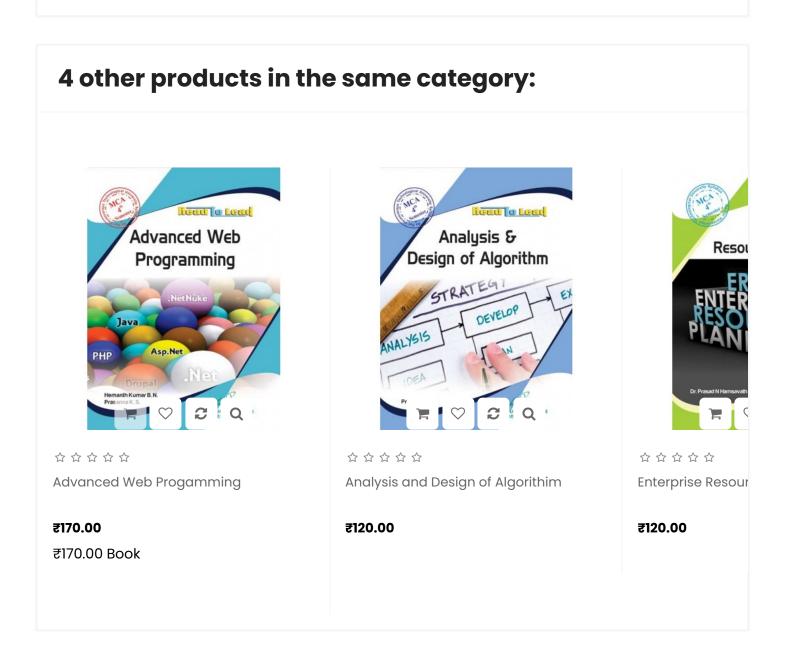
0

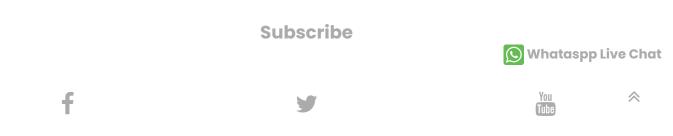
Scanned by CamScanner

Data Warehousing & Data Mining

 \diamond

f


× 1 ^		
ADD TO CART		
♡₽		
Out-of-Stock f Share Y Tweet O Pinterest		
🖉 Add Reviews		
Dr. M. S. Shashidhara ISBN - 9789351634898		


Description	Product Details	Reviews		
Visvesvaraya Technologic	al University (VTU), MCA, Fourth	Semester		
Syllabus				
DATA WAREHOUSING AND E	DATA MINING			
Subject Code : 13MCA442			I.A. Marks	: 50
Hours/Week : 4			🚫 What	aspp Live Chat
f	9		You Tube	~

Data Warehousing and OLAP		8 Hours	
Data Warehouse Basic Concepts,	, Data Warehouse Modeling, Data (Cube and OLAP.	
Data Mining		6 Hours	
	, Motivating Challenges, Data Minin	ng Tasks, Which Technologies are	
Used, which Kinds of Applications	are Targeted by Data Mining.		
Data Mining		6 Hours	
Types of Data, Data Mining Applic	ations, Data Preprocessing.		
Association Analysis: Basic Conce	epts and Algorithms	8 Hours	
	e Generation, Compact Represent		
Alternative Methods for Generatin Patterns.	ng Frequent Item Sets, FP Growth Al	gorithm, Evaluation of Association	
Classification		12 Hours	
Basics, General Approach to Solve	e Classification Problem, Decision 1	Trees, Rule Based Classifiers, Nearest	
0	assifiers, Estimating Predictive Accu on Methods, Evaluation Criteria for	,	
Problem.			
Clustering Techniques		8 Hours	
		g Distance, Types of Cluster Analysis	
Methods, Partitional Methods, Hier Cluster Analysis	archical Methods, Density Based N	Nethods, Quali 🕟 Whataspp Live Ch	at
f	y	You 😞	

Outlier Analysis

Outlier Detection Methods, Statistical Approaches, Clustering based Applications, Classification based Approached.

Stay connect

Information	~
Extras	~
My account	~
About Us	~
Contact us	~

Popular Tags

Dr. Alka Gupta Jhansi Akhtar Hussain 4th semester first year 3 semester solve series 4 semester **Digital Marketing** fourth semester GNM third semester Prof. Urmila Devi Bhardwaj first semester bba 1 YEAR Bundelkhand University MCQ Booklet Dr. Farukh Khan Decision Making And Risk Managem lucknow university BTECH Indian Nursing Council Entrepreneurship And Small Busin Production And Operation Managem aryabhatta knowledge university Human Resource Management Functi b.ed 1 semester Savitribai Phule Pune University

Copyright © 2019 - All rights reserved.

 \approx

f

	CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING (Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org										
SI.NO	Name of the teacher	Title of the book/chapters published	Title of the paper	Title of the proceedings of the conference	Year of public ation	ISBN/IS SN number of the proceedi ng	Department Name	Name of the publisher	Weblink		
1	Dr. Preethasharan	Digital Communicatio n Lab Manual			2016		ECE	CBS, Publications, Delhi.	https://www.flipkart.com/ad vanced-digital- communication-laboratory- manual- 1st/p/itmdf2k9dnutgsws		
2	R.Bhargava Rama Gowd		Real Time Implementation of Multimedia Traffic Unicast and Multicast groups using Optical Network	Advanced Communication, Control& Computing Technologies	2016	1978-1- 4673- 9544-1	ECE	Syed Ammal Engineering college, Ramanathpura m,Tamilnadu.	https://ieeexplore.ieee.org/do cument/7831595		
3	Gunjan Thakur Vemana Institute of Technology, Bangalore, Karnataka ,Preeta Sharan; Mrinal Sarvagya		A digital Cross Connect (DCS) switch for multicast and broadcast traffic	2016 IEEE Annual India Conference (INDICON)	2016	2325- 9418	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7838949		
4	Indira Bahaddur, P.C. Srikanth, and Preetha Sharan		Photonic crystal nano cavity pressure sensor	13th International Conference on Fiber Optics and Photonics	2016	978-1- 943580- 22-4	ECE	Optical Society of America	https://www.osapublishing.o rg/abstract.cfm?uri=Photonic s-2016-Tu4A.69		

	CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING (Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 Emdi: engprincipal@theoxford.edu Web: www.theoxfordengg.org										
5	Gunjan Thakur; Ambika Gumpe; Mrinal Sarvagya; Preeta Sharan	An area efficient multiplexer for crossbar arbiter design using quantum dot cellular automata	2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)	2016	978-1- 5090- 0774-5	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7807970			
6	Savitha; K. Srinivas Rao; Preeta Sharan	Detection of oncological cell for breast cancer by using SPR technology	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7724763			
7	Gunjan Thakur Vemana; Mrinal Sarvagya; Preeta Sharan	Wireless digital cross connects SOC for optical networks using FPGA	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7724762			
8	H. A. Navyashree; Pre eta Sharan	An optical storage device by surface plasmon resonance	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7724761			
9	S.K. Pratibha; T.N. Vinay	An efficient design of QCA based memory	2016 3rd International Conference on Computing for	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7724764			

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551

E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

	Kumar; Preeta Sharan		Sustainable Global Development (INDIACom)					
10	Samyukta A Hassan; Preeta Sharan	Low power quantum gates for the implementation of reversible memory elements using quantum dot cellular automata	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/ab stract/document/7724758
11	Sandip Kumar Roy; M Harshitha; Preet a Sharan	A comparative study of saline and non-saline water in application of tomato yield by using photonic sensor	2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)	2016	978-9- 3805- 4421-2	ECE	IEEE Explorer	https://ieeexplore.ieee.org/do cument/7724759/similar#sim ilar
12	Indira Bahaddur; P C Srikanth; Preeta Sharan	A photonic crystal based pressure sensor	2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)	2016	978-1- 4673- 9939-5	ECE	IEEE Explorer	https://www.researchgate.net /publication/311252459_A_p hotonic_crystal_based_press ure_sensor
13	Mrs.Nisha c Rani	Modular phase DC-DC converter with soft switching high frequency isolation		2016	ISSN (Online): 2347 - 2812	EEE	<u>IJRAET</u>	http://www.irdindia.in/journa l_ijraet/pdf/vol4_iss9/8.pdf
14	Dr.B.K.Manjuna tha and Divakara R	Propyl 4-(3-oxo- 1,3-dihydro-2H- benzo[g]indazol- 2-yl) benzoate an novel bioactive	Proceedings of the 10th INDIA Com- 2016, 16th -18th march 2016, ISSN:0973-7529	2016		Biotechnology	INDIAOM	https://www.researchgate.net /publication/298743987_Pro pyl_4-3-oxo-1_3-dihydro- 2H-benzogindazol2- yl_Benzoate_an_Novel_Bioa

		Estel.)		THE OXFOI ed by the Govt. of Karn Rea Bomma Ph: 1	RD CO ataka, Affi Approved cognised anahalli, H 080-61754	LLEGE C liated to Visve by A.I.C.T.E. by UGC Unde losur Road, B 601/602, Fax:	SOCIETY (Regd.) DF ENGINEERING svaraya Technological Unive New Delhi. er Section 2(f) angalore - 560 068. 080 - 25730551 eb: www.theoxfordengg.org	rsity, Belagavi.	
			compound from Streptomyces species, RHC-1, isolated from soil of Western Ghats, Karnataka, India						ctive_Compound_Isolated_fr om_Streptomyces_Species_ RHC- 1_Isolated_from_Soil_of_W estern_Ghats_Karnataka_Ind ia
15	Prof A.Sahana	Transforming management education for sustainable tomarrow	A competency model for determining the profile of b- school faculty in bangalore		2016		MBA	AIMA	https://www.researchgate.net /publication/299512650_Tra nsforming_Management_Ed ucation_for_Sustainable_tom orrow
16	Dr.James Thomas	Innovation in marketing, E Commerce ,information technology and banking (IMEIB-2016)	Innovation in marketing, E Commerce ,information technology and banking (IMEIB-2016)	Business sustainability	2016	ISSN :0254- 8755	MBA	IMEIB2016	
17	P.Chandrika reddy	Managerial Communicatio ns			2016	ISBN:97 8-93- 86232- 83-0	MBA	Thakur Publications	https://www.tppl.org.in/2020 /first-sem/1720-managerial- communication- 9789389516548.html
18	Dr. M S Shashidhara	Data warehousing and Data Mining			2016		MCA	Thakur Publications	https://www.tppl.org.in/2020 /fourth-sem/1932-data- warehousing-data-mining- 9789351634898.html

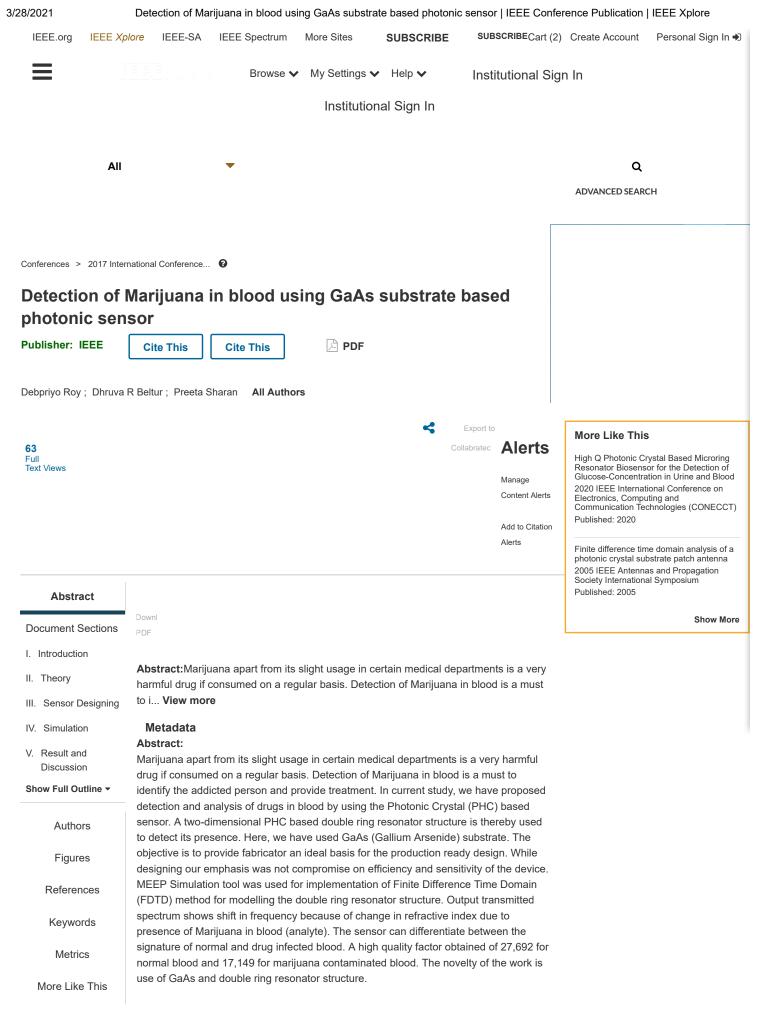
		and a second second		THI (Recognised by the	E OXFORI Govt. of Karnata Ap Recog Bommana Ph: 080	S EDUCATIO OCOLLEGE aka, Affiliated to Vis proved by A.I.C.T nised by UGC U halli, Hosur Road 0-61754601/602, F al@theoxford.edu	OF ENG svesvaraya Tec I.E. New Delhi nder Section I, Bangalore - Fax: 080 - 257	INEERING hnological University, Bela i. 2(f) 560 068. 30551	ıgavi.	
SLNO	Name of the teacher	Title of the book/chapt ers published	Title of the paper	Title of the proceedings of the conference	Name of the conference	National / International	Year of publicatio n	ISBN/ISSN number of the proceeding	Affiliating Institute at the time of publication	Name of the publisher
1	Dr Preeta Sharan	Advanced Mobile Technologie s for Secure Transaction Processing: Emerging Research and Opportuniti es					2017		The Oxford College of Engineering	IGI Global
2	Debpriyo Roy; Dhruva R Beltur; Preeta Sharan		Detection of Marijuana in blood using GaAs substrate based photonic sensor	2017 International Conference on Circuits, Controls, and Communications (CCUBE)	CCUBE 2017	International	2017	978-1-5386-0615-5	The Oxford College of Engineering	IEEE Explorer
3	S. Chaitra; C. Veena; K. Srinivas Rao; Preeta Sharan		SPR based biosensor for the detection of abnormal growth of tissues	2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)	ICNETS2	International	2017	978-1-5090-5913-3	The Oxford College of Engineering	IEEE Explorer

		a state of the		(Recognised by the	E OXFORD Govt. of Karnata Ap Recog Bommana Ph: 080	S EDUCATIO O COLLEGE aka, Affiliated to Vis proved by A.I.C.T nised by UGC U halli, Hosur Road 0-61754601/602, F al@theoxford.edu	OF ENG svesvaraya Tec I.E. New Delh nder Section Bangalore - fax: 080 - 257	INEERING hnological University, Bela i. 2(f) 560 068. 730551	ıgavi.	
4	Manjula.C		Command Driven Scalable & Programma ble FPGA Based Digital Test Pattern Generator	International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)	ICEECCOT -2017	International	2017	978-1-5386-2361-9	GSSS Institute of Engineering and Technology for Women, Mysore	IEEE Explorer
5	Someswari.T		Probing the Efficiency of Research contribution towards Fuzzy Sliding mode Controller	• Internationa l Conference on Circuits, Controls, and Communications (CCUBE)	CCUBE- 2017	International	2017	978-1-5386-0615-5	The Oxford College of Engineering	IEEE Explorer
6	Dr B Raju	Dry sliding wear properties of ZA alloy containing impurities with and without treatment		Emerging Trends in Mechanical Engineering Proceedings of the International Conference,	ETME- 2017,	International	2017	2321-3051	The Oxford College of Engineering	International Journal of Aeronautical and Mechanical Engineering

To Support Customers in Easily and Affordably Obtaining the Latest Peer-Reviewed Research, Receive a 20% Discount on ALL Publications and Free Worldwide Shipping on Orders Over US\$ 295

Additionally, Enjoy an Additional 5% Pre-Publication Discount on all Forthcoming Reference Books

Browse Titles (https://www.igi-global.com/search/?p=&ctid=1%2c2)


Advanced Mobile Technologies for Secure Transaction Processing: Emerging Research and Opportunities

Raghvendra Kumar (/affiliate/raghvendra-kumar/321745/) (LNCT Group of Colleges, India), Preeta Sharan (/affiliate/preeta-sharan/320736/) (The Oxford College of Engineering, India) and Aruna Devi (/affiliate/aruna-devi/320737/) (Surabhi Software, India)

Release Date: August, 2017 Copyright: © 2018 Pages: 177 DOI: 10.4018/978-1-5225-2759-6

ISBN13: 9781522527596 ISBN10: 1522527591 EISBN13: 9781522527602

Hardcover:	\$104.00 List Price: \$130.00
//Codwalevenced-mobile-technologies-secure-transaction/178715?f=hardcover)	~
Current Special Offers	
E-Book:	\$104.00 List Price: \$130.00
//Sockalevenced-mobile-technologies-secure-transaction/178715?f=e-book)	~
Current Special Offers	
Hardcover + E-Book:	\$124.00 List Price: \$155.00
// Codwald venced-mobile-technologies-secure-transaction/178715?f=hardcover-e-book)	~
Current Special Offers	

Detection of Marijuana in blood using GaAs substrate based photonic sensor | IEEE Conference Publication | IEEE Xplore

Published in: 2017 International Conference on Circuits, Controls, and Communications (CCUBE)

Date of Conference: 15-16 Dec. 2017 INSPEC Accession Number: 17862303

Date Added to IEEE Xplore: 25 June 2018 DOI: 10.1109/CCUBE.2017.8394161

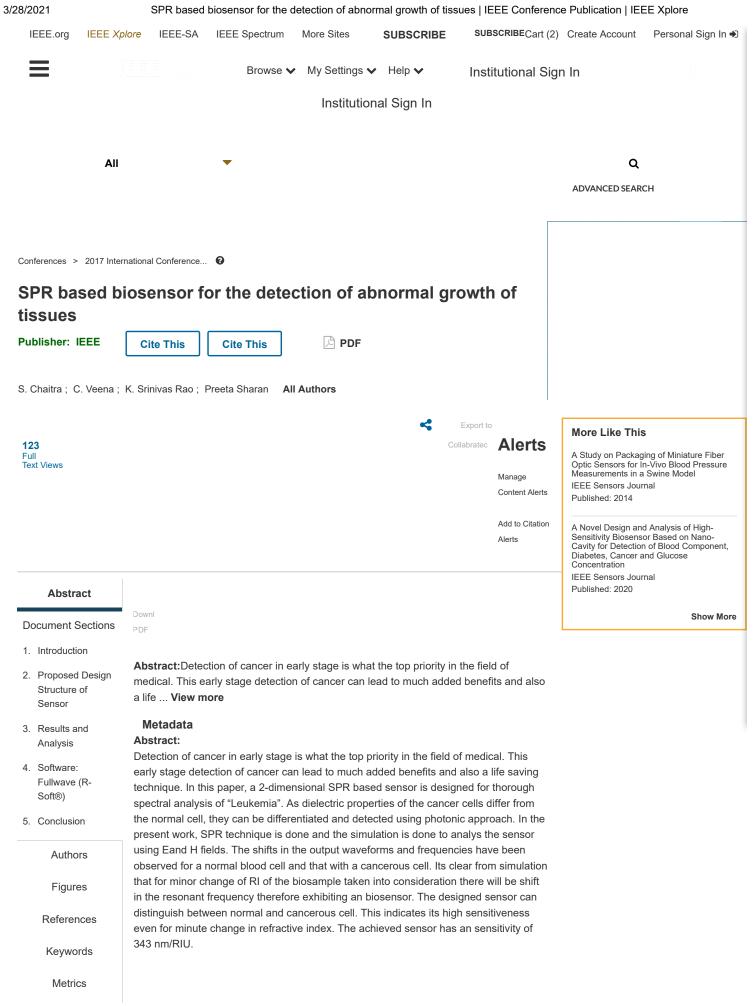
ISBN Information: Electronic ISBN:978-1-5386-0615-5 Print on Demand(PoD) ISBN:978-1-5386-0616-2 Publisher: IEEE

D) Conference Location: Bangalore, India

E Contents

I. Introduction

Substance abuse, otherwise called drug manhandle, is a designed utilization of a drug in which the user consumes the substance in sums or with techniques which are destructive to themselves or others, and is a type of substance-related turmoil. Drug addiction may be an inveterately reversion disorder that has been characterized by the compulsive use of addictive substances despite adverse consequences to the individual and society. Some of these substances are obtained from natural sources while others are synthetic or designer drugs. The particular reason for substance manhandle is not clear, with hypotheses including one of two: either a hereditary manner which is found out from others, or a propensity which if compulsion creates, it shows itself as a ceaseless weakening disease. In 2010 about 5% of people (230 million) used an illicit substance. Of these 27 million have high-risk drug use otherwise known as recurrent drug use causing harm to their health, psychological problems, or social problems or puts them at risk of those dangers. [1]


Authors	~
Figures	~
References	~
Keywords	~
Metrics	~

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Fo	1101	V	
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f	in	1	3
	VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060				
		TECHNICAL INTERESTS	CONTACT & SUPPORT				

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

3/28

More Like This		in: 2017 International Conferen Software (ICNETS2)	ce on Nextgen Electronic Technologie	2S:	
	Date of Co	onference: 23-25 March 2017	INSPEC Accession Number: 1724	5511	
	Date Adde	ed to IEEE Xplore: 16 October	DOI: 10.1109/ICNETS2.2017.80679	18	
			Publisher: IEEE		
	Electr	ormation: onic ISBN:978-1-5090-5913-3 8-1-5090-5912-6	Conference Location: Chennai		
		on Demand(PoD) 978-1-5090-5914-0			
		i≡ c			
	1. Introd				
		based on surface plasmons exh ire the need for labelling of mole	• •		
		ld of science which act as power lying the interaction of biomolecu	•		
			ne. Altriough conventional of IX		
		are simple, compact, robust and			
	the devic are not s making i	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A	nponents are too large that they ue Reading id integration [2] [3], thus dvancement in the		
	the devic are not s making i develop	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the e and waveguide based surface		
	the devic are not s making i developi plasmon	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon		
	the devic are not s making i developi plasmon which ha	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon		
	the devic are not s making i developi plasmon which ha	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	~	
	the devia are not s making i developi plasmon which ha miniaturi	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	~ ~	
	the devic are not s making i develop plasmon which ha miniaturi	ce dimensions and its optical cor Sign in to Contin suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	~ ~ ~	
	the devia are not s making i develop plasmon which ha miniaturi Authors Figures Referenc Keyword	ce dimensions and its optical cor Sign in to Contin Suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	 ✓ ✓ ✓ ✓ 	
	the devia are not s making i develop plasmon which ha miniaturi Authors Figures Reference	ce dimensions and its optical cor Sign in to Contin Suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	× ×	
	the devia are not s making i develop plasmon which ha miniaturi Authors Figures Reference Keyword Metrics	ce dimensions and its optical cor Sign in to Contin Suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they be Reading d integration [2] [3], thus volvancement in the re and waveguide based surface t of a sensor based on silicon material system which	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	
IEEE Personal A	the devia are not s making i develop plasmon which ha miniaturi Authors Figures Reference Keyword Metrics	ce dimensions and its optical cor Sign in to Contin Suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they use Reading d integration [2] [3], thus dvancement in the re and waveguide based surface t of a sensor based on silicon	 ✓ ✓ ✓ ✓ 	Follow
IEEE Personal A CHANGE USERNAME/	the devia are not s making i develop plasmon which ha miniaturi Authors Figures Referenc Keyword Metrics	ce dimensions and its optical cor Sign in to Contin Suitable for the miniaturization ar t out of lab on chip application. A ment of high sensitive optical fibr is as resulted in the developmen as an increased refractive index ized.	nponents are too large that they be Reading d integration [2] [3], thus volvancement in the re and waveguide based surface t of a sensor based on silicon material system which	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	1333 f in ¥

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	
--------------	--

Purchase Details

» Change Username/Password

» Payment Options

Profile Information

Need Help?

» US & Canada: +1 800 678 4333

» Communications Preferences

Command Driven Scalable & Programmable FPGA Based Digital Test Pattern Generator

Manjula C

Department of Electrical and Electronics Engineering The Oxford College of Engineering , Bangalore, Karnataka, India manjulacmoksha@gmail.com

Abstract- The proposed FPGA based digital Automatic Test Equipment (ATE) consists of two main design modules i.e., Digital Test Pattern generator (DTPG) & Digital Logic Analyzer. In this paper, novel FPGA approach is explained and the design and functionality COMMAND DRIVEN DTPG modules - 6 channels Frequency Synthesis block (FSB), 8x8 switch matrixes, 24 bit COMMAND Pattern Register are discussed. For all the design modules of DTPG, coding is done using Verilog HDL and simulated using Xilinx (FPGA) ISE simulator.

Keywords - Digital Test Pattern Generator; Digital Logic Analyzer (DLA); Device under Test (DUT); ATE, Frequency Synthesis; Switch Matrix; Pattern Register; Scalable etc.

I. INTRODUCTION

As a part of my ongoing research on FPGA based scalable & programmable Digital ATE, I have conducted exhaustive survey covering- Testing principle, Levels, Types, Process, VLSI or Chip testing, Automatic Test equipment (ATE) – configuration, evolution, three case studies of FPGA interfaced with ATE, FPGA generating ATG for ATE & FPGA used with PC scope for VLSI / Chip testing etc. and published a survey paper [1].

I also undertook in-depth survey into very important & popular research nearest to my work on FPGA based Built In Self Test (BIST), Logic Simulator, ATPG, Fault Detection and Emulation, TPG, Test scan, Frequency synthesizer, Multiple clock generation, Memory testing & RISC processor testing covering their various block diagram, architecture, functionality, approaches, modules, strategies etc. and I have published a case study paper [2].

Making use of the above two survey papers, I am able to formulate my research design and a part of that, I have already published in my technical paper [3]. Other researchers have used hardware, software and embedded design methodologies and approaches. Each has its own

Jayadevappa D

Department of Electronics & Instrumentation Engineering JSS Academy of Technical Education, Bangalore, Karnataka, India devappa.22@gmail.com

merits and demerits - which have to be surveyed, studied & experimented. But I am using FPGA design methodology owing to its standard technology advantages.

II. DIGITAL AUTOMATIC TEST EQUIPMENT

The Logic Analyzers and Pattern Generators are very expensive, as they run into Lakhs of Rupees (more expensive than the Design cost itself). Hence there is a need to evolve low cost, indigenous and accurate PC based equipment, which can perform the Test Vector Generation and provide Synchronous or Asynchronous Signals over 8/16/32/64 channels or bus widths, required to test ICs, Circuits or PCBs.

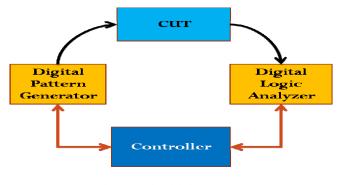


Fig.1: Generic Digital ATE [1]

The main components of the digital ATEs include Test Pattern Generator and Logic Analyzer as shown in figure 1.

A. Digital Test Pattern Generator

Digital Test Pattern Generator is used for functional testing; to debug the new designs and failure analysis of existing designs. Pattern register stores the different patterns of waveforms and the signals with different frequencies supplied by the Frequency synthesis block. A switch matrix routes high frequency signals between the device under test (DUT/CUT) & measurement equipment; Input signals are controlled by control signals (command).

B. Digital Design of Digital Test Pattern Generator (DTPG)

The proposed novel design & block diagram of Digital Test Pattern generator (DTPG) is shown in figure2. DTPG generates the programmable digital patterns to test the digital circuit or Design under test (DUT). DTPG consists of three main blocks namely frequency synthesis block (FSB), Switch Matrix (SM) and Command Pattern Register.

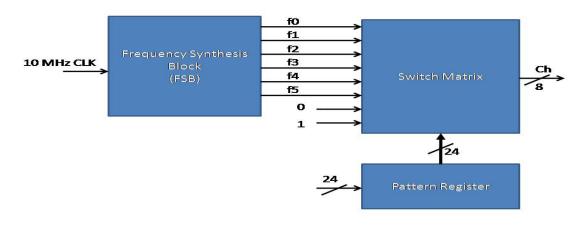


Fig.2: My Novel approach towards FPGA based Digital Test Pattern Generator (DTPG)

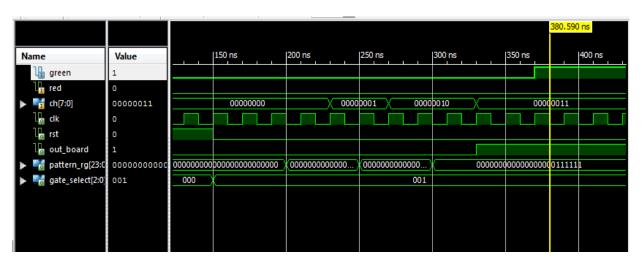


Fig.3: Simulation result of top Level of complete DTPG functionality

DTPG sub system & its sub modules are designed and simulated using Xilinx ISE EDA tool. Verilog HDL is used to implement all these 3 sub modules of DTPG.

First, all the three sub blocks are individually designed, simulated and verified using the Verilog test bench. In the top module, the three modules are instantiated and connected with respective inputs and outputs of the other modules. The inputs of the DTPG block are clock, reset, input pattern to pattern register and only output is 8 channel outputs. Here 8 output channels are used to test the DUT. Any of the 8 input channels can be mapped to the output of DTPG. Hence, to select any of the 8 channels & to map them into 8 outputs, we need 24 select lines. So total 24 bits of input signals called COMMAND signals are applied to the COMMAND Pattern

Register to map, any of the required frequency or signal to 8 switch matrices to be output from DTPG.

Above figure 3 shows the simulation results of the DTPG. In the simulation, different inputs of the DTPG blocks are provided using the verilog test bench such as clock, reset and digital pattern to pattern register. Different logic gates such as AND, OR, EXOR etc. are used as a DUT to verify the DTPG. In the above figure, different signals are used such as Green LED, Red LED signals and the channel Ch [7:0] - 8 channels, two channels are used to verify the two inputs of the AND gate. Out board signal is the output of the DUT which verifies the reference value and based on the value, it tells whether the DUT output is proper by making green signal and red signal high or low. From the simulation result it shows that, four different input patterns are applied to the combinational gates and response is compared with the reference value and if the real output and reference are matched for all the possible combination then output green will be high otherwise red will be high.

C. Design of DTPG Frequeny Synthesis Block (FSB)

The block diagram of the frequency synthesis block is shown in the figure 4. The reference clock frequency is used to generate the different frequency signal. In this experiment, reference clock frequency is 10MHz. So 10MHz is down converted into 6 different frequencies by dividing the reference clock frequency by 10 several times & the divided frequency is used as a reference for the next frequency converter logic.

The RTL schematic diagram of the FSB is shown in the figure 5. The clock input is used to drive the FSB block (which is referred as a master or reference clock) and the reset initializes and resets the FSB at its initial state. The output of the FSB is 6 different frequency signals.

The simulation result of the FSB is shown in the figure 5 which includes four simulation images of 6 different frequency signal. The first two signals in all figurere present reference clock and reset. In figure 5(a) 1MHz and 100KHz frequency signals are shown, in figure 5(b) 100KHz and 10KHz are shown, in figure 5(c) 10KHz and 1K Hz are shown and figure 5(d) 1KHz, 100Hzand 1Hz.

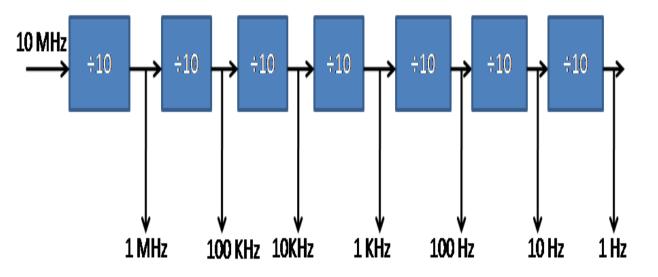


Fig.4 : Digital Design of Frequency Synthesis Block (FSB)

Ze	oom Out		103.333 n	s									
Name	Value	0 ns		200 ns	<u></u>	400 ns		600 ns		800 ns		1,000 ns	1,20
The cik	0	www	MMM	nnnn	www	mm	nnnn	nnnn	nnnn	mm	nnnn	ուսուս	nnnn
1 rst	1						_				_		
🔓 data_1mhz 🔓 data_100khz	0 0												
La data_100khz	0												
data_1khz	0												
data_100hz	0												
급 data_1hz	0												
		X1: 103.3	333 ns										

Fig.5(a): FSB generating the 1MHz and 100Khz

Zoon	<mark>n In</mark>	0.103333 us					
Name	Value	0 us	5 us	10 us	15 us	20 us	25 us 30
🗋 cik	0						
1 rst	1						
🚹 data_1mhz	0						
🚹 data_100khz	0	mmm	տուսո	hunnun	hhhhhhh	uuuuu	տուսուն
🚹 data_10khz 👘	0						
🔚 data_1khz	0						
🔏 data_100hz	0						
data_1hz	0						
		X1: 0.103333 us					

Fig. 5(b): FSB generating 100Khz and 10Khz

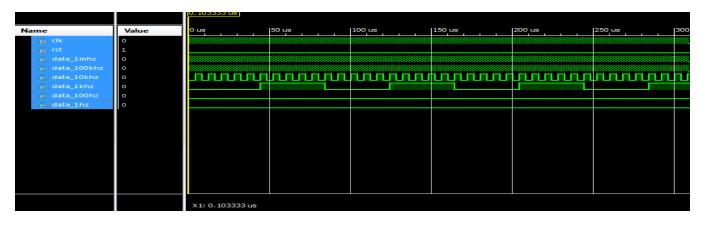


Fig.5(c): FSB generating 10KHz and 1KHz

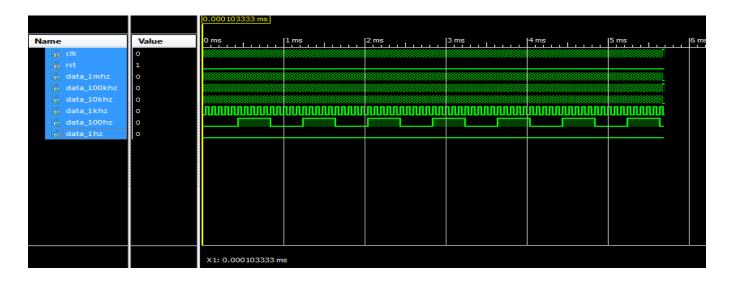


Fig. 5(d): FSB generating 1Khz, 100Hz and 1Hz

Figure 5: Figure (a) shows the 1MHz and 100Khz freuency, Figure (b) shows the 100Khz and 10Khz frequency signal, Figure (c) shows the 10KHz and 1KHz, Figure (d) shows the 1Khz, 100Hz and 1Hz.

D. Design of DTPG Switch Matrix

The block diagram of the switch matrix is shown in the figure 6. Switch matrix selects one input signal from the 8 different frequency signals coming from the FSB. Total 8 different inputs are given to the switch matrix out of which one signal is selected as per the requirement. Three select lines are used to select one signal out of 8 different input signals.

The select lines are controlled by the pattern register, by applying the input pattern to the pattern register. When the three bit input sequence is applied, the select lines selects the required input signal from the eight input signals. Figure 7 shows the RTL schematic of the switch matrix and figure 8 is the simulation result. In the simulation result, signal 3 is the input signal coming from the FSB which is 5 down to 0 i.e., total 6 signal. Here 8 channel switch matrix is implemented so total 8 select lines S0 to S7 are used and each select line is of 2 down to 0 i.e., three select lines for one channel. In this experiment 24 COMMMAND lines are used to select 8 channel.

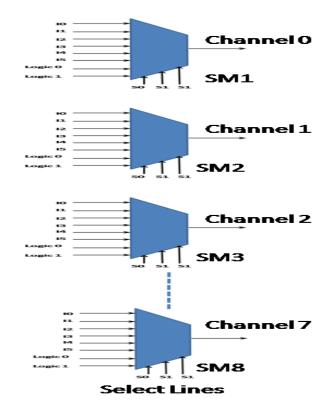


Fig.6: Switch Matrix 8 x 8 - Block Diagram

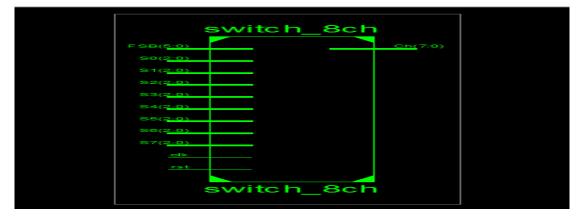


Fig.7: RTL Schematic of 8 x 8 Switch Matrix

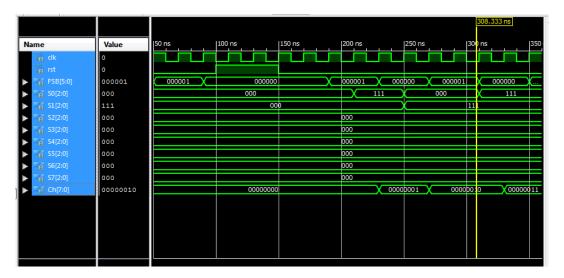
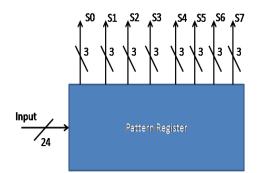


Fig.8: Simulation Result of 8 x 8 Switch Matrix


Figure 8 shows the simulation result of the switch matrix. It indicates that when reset is applied all the inputs and outputs are initialized to zero. Output of FSB, logic 1 and logic 0 is connected as the input to the switch matrix and either logic 1 or logic 0 is selected based on the specific purpose or design. Another signal in the switch matrix is select line S0 to S7 and Ch is the channel output. Based on the sequence given to the select lines respective input get selected and applied to the respective channel. The above figure shows that, by applying 000 000, 000 111, 111 000, 111 111 two channels of the switch matrix is selected and the sequence 00 01 10 11 will be produced at the output of the two channel.

E. Design DTPG COMMAND Pattern Register (TPR)

Block diagram of the pattern register is shown in the figure9. Pattern register captures the input COMMAND

manually from the sources such as hyper terminal or through keypad or keyboard and provides a specific input bit pattern called COMMAND, to the respective select lines of the switch matrix.

It has multiple input and multiple output. Output of the pattern register is the select line which is connected as the input for 8x8 switch matrix which selects the respective output channel of the switch matrix. RTL schematic of pattern register is shown in the figure 10. Inputs of the pattern register include 24 bit pattern_rg signal, clock and reset and 8-output lines S0 to S7 and each line is a 3 bit signal. Simulation result of the pattern register is shown in the Figure 11. The input is of 24 bit COMMAND sequence which is assigned to the particular output signal of S0 to S7. The simulation result shows that, input pattern is assigned to S0 and S1 output lines i.e., input is given only for the two channel.

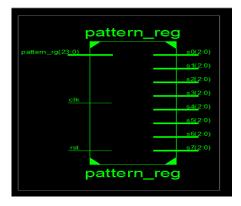


Fig. 10: RTL Block Diagram of Test Pattern Register

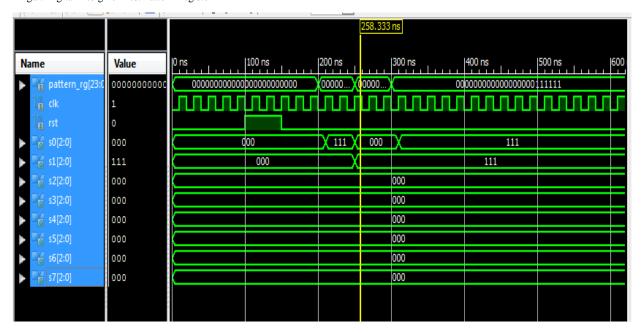


Fig.11: Simulation Results of the Pattern Register.

III CONCLUSION

After in depth analysis of all those several Research efforts on DTPG, I have developed this novel architecture of FULLY SCALABLE PROGRAMMBALE & COMMAND CONTROLLED FPGA based DTPG using Verilog HDL, to be implemented & tested on Xilinx FPGA. In this Paper, I have explained top level block diagram of DTPG & its 3 sub modules–Frequency Synthesis Block, Switch Matrix, Test Pattern Register. I have used VERILOG HDL & XILINX ISE Design suite v14 for Simulation & RTL extraction. I included snap shot of the simulation waveforms & RTL schematics in this paper.

REFERENCES

- Manjula. C, D. Jayadevappa, "Survey of Electronic hardware Testing types, ATE evolution & case studies" IJERT, October 2017
- Manjula. C, D. Jayadevappa, "Survey of Electronic hardware Testing types, ATE evolution & case studies" IJERT, October 2017
- [3] Manjula. C, D. Jayadevappa," Case studies of various FPGA based BIST, ATPG, Processor and Memory Testing" IJETAE, October 2017
- [4] Manjula C, D Jayaevappa,, "FPGA BASED WIRELESS UNIVERSAL DIGITAL AUTOMATED TEST EQUIPMENT", , International Journal of Computer Technology and Applications – IJCTA, Jan 2017.
- [5] Milan Stork, "Multiple Outputs Frequency Synthesizer", 5th Mediterranean Conference on Embedded Computing, MECO 2016 Bar, Montenegro
- [6] Yann Deval and François Rivet, "A balanced logic routing block for Factorial-DLL based frequency generation", 2016 IEEE

Fig.9: Digital Design of Test Pattern Register – TPR

- [7] "Development Synthesizer of Stable High-Frequency Signal", Vladimir A. Skolota, Irina A. Belova, Miroslav V. Martinovich, 17th international conference on micro/nanotechnologies and electron devices EDM 2016
- [8] K Jamal, Dr. P.Srihari "Analysis of Test Sequence Generators for Built-In Self-Test Implementation", , 2015 International Conference on Advanced Computing and Communication Systems (ICACCS -2015), Jan. 05 – 07, 2015, Coimbatore, INDIA
- [9] Mihaela Radu, "Testing Digital Circuits Using a Mixed-Signal Automatic Test Equipment", 978-1-4799-3732-5/14, 2014 IEEE
- [10] H. Alper, "Developing New Automatic Test Equipments (ATE)using Systematic Design Approaches", TOKU, 978-1-4673-5683-1/13, 2013 IEEE
- [11] Orkun Alp, Özden Erdem Kiliç, Ali Ayvalik, Zafer Savas Aselsan "ATE Design And Development For I-Level Maintenance And Production Line Of RCIED Jammer Systems", Inc, 978-1-4799-8190-8/15, 2015 IEEE
- [12] Nor Zaidi Haron, Masrullizam Mat Ibrahim, Amir Shah Abdul Aziz "VHDL Design and Implementation of FPGA Based Logic Analyzer: Work in Progress",
- [13] Michael George, Jagadeesh Kumar, Mini M.G "Implementation of Digital Stimulus GenerationSystem for a Passive Programmable Medical Implant", 978-1-4799-1823-2/15, 2015 IEEE

Probing the Efficacy of Research Contribution towards Fuzzy Sliding Mode Controller

T. Someswari Asst. Prof: Dept of Electrical & Electronics Engg The Oxford College of Engineering, Bangalore, India E-Mail: someswari.t@gmail.com

Abstract— The evolution of sliding mode controller is more than five decade old and at present its functionality has been further more improvised with an aid of fuzzy logic giving rise to a Fuzzy Sliding Mode Controlling System (FSMC). From practical utility viewpoint, it is found that usage of controller is very common in majority of commercial products in current scenario; however, it has not received the stage of excellence by incorporating peak intelligence system using fuzzy logic. Therefore, the present manuscript highlights the research contribution using FSMC towards evolution of various forms of controller design and performs quantitative analysis of the existing research trends to identify certain hidden traits in the existing approaches. The main contribution of this paper is to let a novel researcher working on control system know about the true picture of progress being made by utilizing FSMC and also put forwards certain sets of unaddressed problems in the form of research gap.

Keywords-Fuzzy Logic, Sliding Mode Controller, Uncertainty, Chattering ,Stability

I. INTRODUCTION

Basically, a sliding mode controller is a particular system of variable structure in control system that has been widely investigated for more than a five decade [1]. It is characterized by implementation simplicity and better resistivity against any form of fluctuation generated [2]. The important of sliding mode controller is that the directionality of the velocity vector associated with the state trajectory in controlled manner is found towards manifold of switching under the proximity of the recommended switching manifold [3]. Such forms of the motion are generated due to control actions of discontinuous type that are quite frequent in any strategies of switching controls. When the dynamic equation of the control system is satisfied by the system state than only it represents an existence of the sliding mode. In order to achieve such condition, sliding motion can be only ensured through endless switching events. Inspite of increasing number of research activity in sliding mode Controller till date, the topic is still shrouded by certain ongoing problems i.e. adaptive learning, uncertainties, chattering, enhancement of sustainability towards unstable system, disturbances, elimination of artifacts of dynamic system, etc. These set of problems has not been addressed with full solution as till date, majority of research work still attempts to minimize such fundamental problems in sliding mode

Dr. Anil Kumar Tiwari** ** Director, Amity School of Engineering, AmitySchool of Engineering, Lucknow, India Dr.Nagaraj.R*** *** Director, The Oxford College of Engineering, Bangalore, India

controller apart from other related stability problems in controller design. There is no full-proof solution towards any of the existing research work till date. Slowly, it has been found that such problems could be We could still find recent studies where all these 50 year old problems are still being attempted to minimize, which is a direct indication of lack of robust technique to permanently deal with such issues effectively tackled if other technologies are also considered in this scenario. This leads to evolution of a trend where fuzzy logic [4], neural network [5], genetic algorithm [6], chaos theory [7] became the most preferred techniques that when integrated with sliding mode controller offers effective results. Out of all these techniques, fuzzy logic-based approach is found to be the most dominant solution till date due to its usage of human-based reasoning for dealing with uncertainties of matched and unmatched type. It makes use of experience of human expert in order to perform controlling over the complicated design system [8][9]. The frequent used approaches of using fuzzy logic in sliding mode controller is in using low pass filter to reduce signal of sliding mode controller and fuzzification of sliding mode controller for minimizing chattering effect [10]. The present research paper outlines the discussion of existing techniques of fuzzy sliding mode controller system in order to scale the effectivity with respect to control system. Section 1.1 discusses about the background where different frequently used techniques are discussed for fuzzy sliding mode controller schemes used in control system lines followed by discussion of research problems in Section 1.2 and proposed solution in 1.3. Section 2 discusses about existing research work towards using fuzzy sliding mode controller followed by discussion of research trends in Section 3. Section 4 outlines the identified open research issues and finally, the conclusive remarks are provided in Section 5

1.1 Background

At present, there has been various research works being carried out towards control system using Fuzzy logic [11]. Existing studies have therefore harnessed potential of fuzzy logic within the design of sliding mode controller system in order to incorporate addictiveness. There are studies where Fuzzy Sliding Mode Controller (FSMC) is used for designing gyroscope [12], solving uncertainty problems [13], trajectory tracking of nonlinear system [14], Single Input Single Output system [15], electromechanical actuator [16], mobile robots

[17], boiler drum of ship [18], robot manipulator [19], controlling autonomous underwater vehicle [20] etc. There are multiple cases of such control system where it is proven that Fuzzy logic and sliding mode controller has significant contribution in terms of minimizing chattering effect and gaining enhanced stability condition. Both of these are essentially required in order to deal with uncertainty problems that are potentially associated with non-linear system in practical life. However, such problems doesn't behave in similar way in different design mechanism of controller owing to various forms of sub-problems associated with stability parameters associated with it. The next section outlines the research problems towards the usage of FSMC in controller design followed by proposed aim of the present manuscript.

1.2 Research Problem

FSMC has become the most preferred means in order to design any form of controller at present. It has been used in motor drives, hydraulics, converters, robotic control, satellite path control, harmonic suppression, etc. The existing research papers are published since more than a decade is one evidence of its usage. However, there are some open end question regarding this research topic viz. i) Does the same FSMC always offers similar stability performance to all the controller design? ii) what the scale of effectiveness of existing controller design using FSMC, iii) what are the scale of novelty in implementing FSMC in improving the outcome, and iv) what could be the possible research problem of the study is to explore the research trend where FSMC is used for controller design and identify the open research issues.

1.3 Proposed Solution

The primary aim of the proposed study is to perform an an exhaustive review of existing usage of FSMC towards the controller design in order to understand the research technique being adopted in each cases. Owing to lack of existing review work towards exploring the similar problem, the proposed study investigates various ranges of problems that have been addressed till date by adopting the design methodology of FSMC. Another significant contribution of the proposed study is to evaluate the patterns of research work being carried out till date. Therefore, we consider only the research papers published during 2010 to 2017 for discussing only the updated work. As the number of work towards the usage of FSMC is considerable more in control system, it is quite evident that there must be certain problems that have positively being addressed as well as there may also be some set of problems which are vet to even initiate investigation. Therefore, our research manuscript is meant of assisting the researchers by providing a quick snapshot of the varied research problems being solved using FSMC in order to withdraw a conclusive remarks about the open end problems that needs immediate attention among the research community. The next section discusses about the existing research techniques where FSMC is used to design wide ranges of controllers.

II. STUDIES ON FUZZY SLIDING MODE CONTROL

At present there is various work research techniques towards enhancing the design of Fuzzy Sliding Mode Control (FSMC) system as well as existing studies also focused on applying this on multiple form of applications. Usage of FSMC towards harmonic suppression is seen in the work of Cao and Fei [21] where an active power filter is used for faster tracking the instruction by incorporating adaptiveness in the design of FSMC. The compensation of reactive power can also be done using FSMC. Study in this direction was carried out by Mohanty et al. [22] where a controller is designed using fuzzy sliding mode for enhancing the transient performance. The work carried out by Rajendiran et al. [23] has designed a controller using FSMc for enhancing the driving experience using single/double actuator. The authors have adopted fractional order FSMC to design the feedback controller. Dasmahaputra et al. [24] have developed a design of hydraulic system using FSMC. Further, Wang et al. [25] have addressed the problem of Takagi-Sugeno fuzzy system with an aid of delta operator approach for representing the non-linear system with discrete time. Wang et al. [26] have integrated radial-basis function along with the FSMC in order to incorporate adaptive feature towards suppressing harmonic distortion. Adoption of dynamic FSMC is found in the work carried out by Wen et al. [27] in order to effectively control the active suspension mechanism of non-linear form. Liu et al. [28] for regulating output voltage using type-2 fuzzy logic. Various uncertain coefficients were controlled using the presented adaptive technique. Zhang et al. [29] have addressed the problem associated with Tagaki-Sugeno fuzzy system by presenting a sliding surface with memory-based considering both the state of past and present of control system. FSMC is also found to be used for harnessing maximum level of wind power as seen in the work of Yin et al. [30]. The technique results in extracting of maximum current and double integral FSMC for monitoring the current flow. Soltanpour et al. [31] have presented a modeling of a robotic system whose control system was framed up by using adaptive FSMC in order to minimize the uncertainties over system stability of closed loop. Similar mechanism of control strategy on induction motor was seen in the work of Saghafina et al. [32] where adaptive FSMC has been utilized for controlling speed associated with the indirect control system of field. Patre et al. [33] have presented a mechanism for controlling nuclear reactors using FSMC for controlling the spatial factor associated with reactors. The technique performs approximation of the discontinuous control system for addressing the chattering issue. Nair et al. [34] have addressed the problem of path planning for multiple satellites using SMC along with hybrid potential field technique. The chattering effect is minimized using fuzzy logic that has also assisted in achieveing further stability.

The works carried out by Li et al. [35] have used delta operator method for addressing the problem associated with Takagi-Sugeno fuzzy system along with singular value decomposition. The study outcome is found to offer better Uniformly Ultimately Bound (UUB). Yang et al. [36] have addressed the problem of design control system of master-slave pertaining to tele-operation system using a fast terminal based FSMC with enhanced precision system. The technique also used adaptive fuzzy logic system for dealing with the uncertainties. Lian [37] have implemented radial basis function in order perform regulation of fuzzy-based parameters by addressing the problem of dynamic coupling effect arising

between robotic control system and degree of freedom. Khanesar et al. [38] have presented a study for networkedbased control system by introducing fuzzy system in order to compute the amount of non-linear requirements induced y delay from networks. Farhoud and Erfanian [39] have developed a control mechanism for paraplegic pedaling using fuzzy logic and sliding mode controller of higher order for better control over pulse amplitude and pulse width. Investigation towards stochastic system with non-linearity was carried out by Gao et al. [40][41] who has addressed universal integral SMC issue by incorporating dynamic behaviour in it. Huang et al. [42] have presented a model for enhancing the power control for improving the ability to discard the disturbances. The technique also develops a switching state using FSMC that results in better digitization of the controller system. Lin and Li [43] have developed a model-independent control mechanism using neural network and FSMC for compensating the error caused due to approximation. The technique also introduces an adaptive learning mechanism. Non-linearity issues arising from chaotic system are addressed in the work of Niknam et al. [44]. Lian [45] have presented a self-organizing fuzzy controller to address its stability issues. The fuzzy components were enhanced by adaptive law in order to testify on the case study of suspension system. Yeh et al. [46] have developed a controller for an attitude of airborne vehicle in presence of white noise. Similarly, there are various researchers that has used FSMC for different problems e.g. speed controller for synchronous motor [47], controller for real-time application [48], stabilizing optical image [49], and controlling electrical drive [50]. Therefore, there are various ways that the existing researchers have exploited the potential of FSMC for designing and improving different forms of controllers. Table 1 highlights the summary of existing techniques of FSMC.

Table 1 Summary of Existing Techniques

Author	Problem	Technique	Advantage	Limitation
Cao and Fei [21]	Harmonic suppression	Simulation-based	Minimal Total harmonic distortion	No benchmarking
Mohanty et al. [22]	Voltage stability, reactive power management	Mathematical Modelling	Enhanced stability	Doesn't meet dynamic uncertainties in transmission network
Rajendiran et al. [23]	Assessing ride quality	Fractional FSMC	Better than conventional FSMC	Doesn't consider non- linear problems with uncertainties.
Dasmahaputra et al. [24]	Hydraulic design	Adative controller design in FSMC	Better performance	System complexity not considered.
Wang et al. [25]	Discrete time Takagi- Sugeno fuzzy system	Delta Operator	Highly fault tolerance	Minimal assessment scenario
Wang et al. [26]	Harmonic suppression	Radial basis function, FSMC	Minimize chattering effect	No benchmarking
Wen et al. [27]	Active suspension system of vehicle	Dynamic mode, FSMC	Effective study of non-linear	Lacks complexity analysis
Liu et al. [28]	Regulating output voltage of converters	Interval Type-2 FSMC	Ensures reachability in finite time	Is not applicable on power distribution line
Zhang et al. [29]	Memory management	Mathematical modelling	Adaptive & robust	Only applicable for matched certainties
Yin et al. [30].	Maximizing DC-DC current	Elimination of harmonic current, FSMC, experimental	Enhance quality of power	No benchmarking, System complexity not considered.
Soltanpour et al. [31]	Robotic control	Adaptive FSMC	Better stability	Doesn't consider full round of control strategy.
Saghafina et al. [32]	Controlling induction motor	Experimental Approach, FSMC,	Better stability	No benchmarking, system complexity not assured.
Patre et al. [33]	Controlling nuclear reactors	FSMC, approximation	Enhance system performance	Specific to water reactors only
Nair et al. [34]	Path formation of multiple satellites	Adaptive FSMC	Effective path formation in shortest time	No comparative analysis, system complexity not addressed

Li et al. [35]	Incorporate adaptivity in SMC	Mathematical Modelling, Delta Operator Method, FSMC, Singular value decomposition	Good UUB performance	Method is case specific
Yang et al. [36]	Control design problem in teleoperation system	Adaptive FSMC	Higher precision	No Comparative Analysis.
Lian [37]	Dynamic coupling effective	Radial basis function, adaptive FSMC	Offer better stabilization	Accuracy depends on large epoch
Khanesar et al. [38]	Packet loss, Delay in time-varying network	Pade approximation, Adaptive FSMC	Effective controlling of dynamic attributes	No benchmarking
Farhoud and Erfanian [39]	Controller for paraplegic pedaling	FSMC, functional electrical simulation	Minimal error	Result specific to limited duration of usage of controller.
Gao et al. [40][41]	Universal integral SMC problem	Stochastic TS fuzzy approximation	Ensure stochastic stability	No comparative analysis
Huang et al. [42]	Controlling direct power in rectifier, harmonic suppression	Switching state controller by FSMC, experimental	Minimal transient setting time.	No comparative analysis, narrowed scope of experiment
Lin and Li [43]	Chattering, tracking trajectories	Asymmetric Gaussian, FSMC, adaptive learning, experimental	Minimize tracking error	No comparative analysis, narrowed scope of experiment
Niknam et al. [44]	Uncertain non-linear system	TS-fuzzy SMC	Reduced chattering	No comparative analysis, narrowed scope of experiment
Lian [45]	Stability issues in fuzzy controller	Experimental	Better performance of control	Complexity is associated.
Yeh et al. [46]	White noise, attitude controller of unmanned vehicle	FSMC, experimental	Ensure better stability	No comparative analysis, narrowed scope of experiment
Leu et al. [47]	Stability problem in synchronous motors	Experimental, torque load observer	Effective speed tracking	Doesn't minimize chattering effect
Manceur et al. [48]	Uncertainties in realtime application	Second order FSMC	Better stability performance, benchmarked	Computational effectiveness is not computed
Li et al. [49]	Stability in optical imagery (sensor-based)	Experimental, Voice-coil method, gyroscope, FSMC	Removes hysteresis non- linearities	No comparative analysis, narrowed scope of experiment
Kowalska et al. [50]	Controlling electrical drive	Linear controller+FSMC	Eliminates uncertainty, disturbances	Experiment limited to specific drive

III. EXISTING RESEARCH TREND

We have reviewed the existing system and performed quantitative analysis of the existing research trend to find out certain extra-ordinary facts. Fig.1 highlights the research trend by considering the research papers published only during 2010-2017. The studies towards using conventional sliding mode and fuzzy based sliding mode converter is nearly equivalent (Fig.1(a)(b)), which will mean that there has been good pace of adoption of fuzzy logic towards sliding mode controllers. However, it is equally important to understand that there are equivalent existing approaches where neural network (Fig.1(c)) has been adopted. Study toward adoption of another typical optimization technique called as Genetic Algorithm is found somewhat less as compared to fuzzy logic and neural network (Fig.1(d). At the same time, we find that there is also a peculiar pattern of case study consideration. From Fig,1(e), we find that majority of the research work has addressed the problem associated with adaptivity and stability problems with an usage of FSMC in existing system. At the same time, specific problems towards chattering as well as uncertainty is lower compared to stability and adaptivity problems in existing research work. This is a clear indication that there are not enough solution towards chattering and uncertainty problems even when the Type-2 Fuzzy logic has been reported to be used already. The underlying problem in this has never been explored in any studies till date. We also find that study pertaining to this topic has also adopted various forms of case

studies or application where FSMC has been implemented (Fig.1(f)). We find that majority of the targeted case study application has considered robotics controlling system. Similarly, vehicular application has also been potentially found to be adopted considered some cases e.g. travel experience etc. However, majority of work towards vehicular application has also used motor drives to achieve certain objectives. The studies towards converter as well harmonic suppression using active power filter has also been reported to be considered. Apart from this frequently considered case studies, the other unique case studies that have been used in tabulated in Table 1 in prior section. This research trend also highlights that there are various unexplored area of case

studies of application where FSMC could play a potential role in enhancing the capability of the control system. Hence, from past 50 years, there has been slow progress in sliding mode controllers in terms of specific application with more scope of enhancing the FSMC. The research trend shown in Fig.1 highlights the most frequently used cases of application where there is further scope of exploring more number of critical and essential controllers using FSMC. It also suggests that research problems pertaining to chattering and uncertainty could be further more investigated for effective outcomes. The numerical outcomes of Fig.1 is considered from research papers published in IEEE, Springer, and Elsevier.

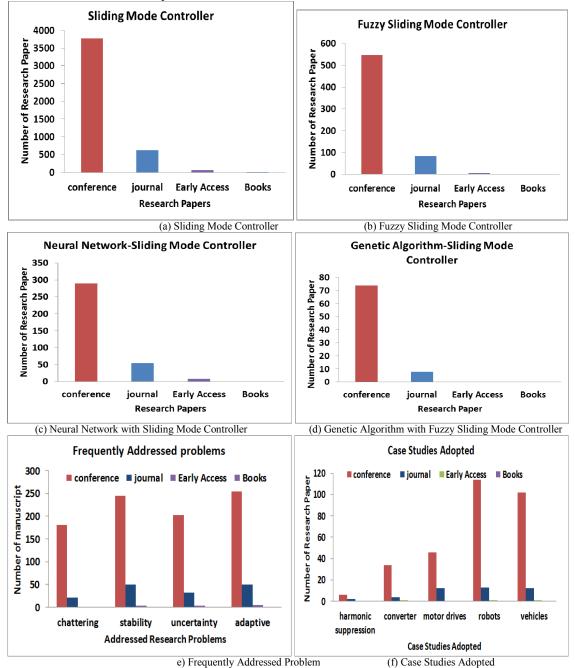


Figure 1 Quantitative Analysis of Research Trend

IV. OPEN RESEARCH ISSUES

After reviewing the existing research work towards FSMC, it is found that there are still some open research issues that stay unaddressed at present. Following are the highlights of the open research issues:

- Lesser Extent of Reusability: Although, it is always a good idea to be explicitly design a problem-specific controller using FSMC, but there are certain things that every controller system has in common i.e. voltage, current, power, orientation, etc. From computational viewpoint, the extent of reusability of any of the component design of controller is extremely less for which reason the cost of the product will be tentatively very expensive. It has also been noticed that even the same problem of controller design is addressed using different design attributes that emphasizes that there should be more reusable components among the different set of controller to make cost effective design.
- Lesser Novelty in FSMC Implementation: It is explored that majority of the existing studies are carried out without any form of significant changes in the conventional design of FSMC in order to include adaptiveness. Majority of the existing studies has just used the same conventional FSMC over different problem scenario of controller design, which is highly case specific. Therefore, there are less amount of investigation being carried out towards exploring the new form of enhancement towards FSMC.
- Unexplored Area of Controller Design: Existing studies have used various forms of controller design of wider ranges of application, but at present there is no research work towards vehicular navigational system, where the use of controller for an effective road guidance system is highly required. At present, the vehicular navigational system uses GPS and internet for guiding that is not so reliable means of navigation as it has many dependencies on external factors that don't reside within the vehicle.
- Less Focus on Computational Efficiency: A closer look into existing research studies will show that there is increasing number of adoption of experimental-based approaches. Unfortunately, none of the experimentalbased approaches has proved to offer the similar performance when exposed to more dynamic scenario of uncertainties. At present, experimental scenarios are highly controlled manner that tends to lowers the scope of the experiment in real-time application

• CONCLUSION

At present, there are many electrical and electronics devices that has a direct dependencies on controllers. More the robust of controller design, more is the effectiveness of application. The smartness of the controller-based application can be enhanced by incorporating fuzzy logic, which is widely used in many commercial-based controller sytem. This success of using fuzzy logic has led to get it integrated with sliding mode controller to deal with certain issues like chattering, stability, interference, uncertainty, etc. By observing all the research work being done till date, it motivates to further adopt FSMC; however by taking some more non-conventional case study that has been never being considered in the past. This research paper gives the insight that all the existing system does have advantages as well as limitation. It also suggests that there are more critical problems by which FSMC is implemented as discussed in research gap. We also find that controllers have been increasingly used in vehicular application but never in navigational system. Therefore, our future direction of work will be towards evolving up with a novel MEMS based advanced navigation system that redefines the existing controller system in very cost effective manner.

The future direction of the work will be towards designing a framework that can design a novel vehicle navigational system using fuzzy logic and sliding mode controller. The study will focus on developing a novel coupled INS/GPS navigational system along with minimization of chattering problem while using sliding mode controller

REFERENCES

- Sundarapandian Vaidyanathan, Chang-Hua Lien, Applications of Sliding Mode Control in Science and Engineering, Springer-Computers, 2017
- [2] Nabil Derbel, Jawhar Ghommam, Quanmin Zhu, Applications of Sliding Mode Control, Springer-Technology & Engineering, 2016
- [3] Jinkun Liu, Xinhua Wang, Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation, Springer Science & Business Media, 2012
- [4] Timothy J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2016
- [5] Ivan Nunes da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Artificial Neural Networks: A Practical Course, Springer, 2016
- [6] Oliver Kramer, Genetic Algorithm Essentials, Springer-Computers, 2017
- [7] Lena C. Zuchowski, A Philosophical Analysis of Chaos Theory, Springer, 2017
- [8] Wendy Santos, Fuzzy Control Systems: Design, Analysis and Performance Evaluation, Nova Science Publishers, 2017
- [9] John H. Lilly, Fuzzy Control and Identification, John Wiley & Sons, 2011
- [10] Didier J. Dubois, Henri Prade, Ronald R. Yager, Readings in Fuzzy Sets for Intelligent Systems, Morgan Kaufmann, 2014
- [11] Y.Jiang, C. Yang, and H. Ma, "A review of fuzzy logic and neural network based intelligent control design for discrete-time systems", Discrete Dynamics in Nature and Society, pp. 11, 2016.
- [12] J. Ren, R. Zhang, and B. Xu, "Adaptive Fuzzy Sliding Mode Control of MEMS Gyroscope with Finite Time Convergence." Journal of Sensors, pp .7,2016
- [13] T.H. Yan, B. Wu, B. He, W. H. Li, and R. B. Wang, "A Novel Fuzzy Sliding-Mode Control for Discrete-Time Uncertain System", Mathematical Problems in Engineering, pp. 9, 2016
- [14] F. Baklouti, S. Aloui, and A. Chaari, "Adaptive Fuzzy Sliding Mode Tracking Control of Uncertain Underactuated Nonlinear Systems", Journal of Control Science and Engineering, pp.12, 2016
- [15] A. Ayadi, S. Hajji, M. Smaoui, and A. Chaari, "Adaptive Moving Sliding Mode Control for SISO Systems: Application to an Electropneumatic System", Journal of Control Science and Engineering, pp.10, 2016

- [16] D. Ma, H. Lin, and B. Li, "Chattering-Free Sliding-Mode Control for Electromechanical Actuator with Backlash Nonlinearity", Journal of Electrical and Computer Engineering, pp. 8, 2017
- [17] H. Navabi, S. Sadeghnejad, Sepehr Ramezani, and Jacky Baltes. "Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller." Advances in Fuzzy Systems, pp. 10, 2017
- [18] S. Liu, S. Zhao, and Y. Wang, "Smooth Sliding Mode Control and Its Application in Ship Boiler Drum Water Level", Mathematical Problems in Engineering, pp.7, 2016
- [19] J-H.Hwang, Y-C. Kang, J-W. Park and D.W. Kim, "Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator", Computational intelligence and neuroscience, pp.11, 2017.
- [20] D. Qi, J. Feng, and J. Yang, "Longitudinal motion control of AUV based on fuzzy sliding mode method", Journal of Control Science and Engineering, pp.7, 2016
- [21] D. Cao and J. Fei, "Adaptive Fractional Fuzzy Sliding Mode Control for Three-Phase Active Power Filter," in *IEEE Access*, vol. 4, no., pp. 6645-6651, 2016.
- [22] A. Mohanty, S. Patra and P. K. Ray, "Robust fuzzy-sliding mode based UPFC controller for transient stability analysis in autonomous winddiesel-PV hybrid system," in *IET Generation, Transmission & Distribution*, vol. 10, no. 5, pp. 1248-1257, 4 7 2016.
- [23] S. Rajendiran, P. Lakshmi and B. Rajkumar, "Fractional order fuzzy sliding mode controller for the quarter car with driver model and dual actuators," in *IET Electrical Systems in Transportation*, vol. 7, no. 2, pp. 145-153, 6 2017.
- [24] S. Dasmahapatra, B. K. Sarkar, R. Saha, A. Chatterjee, S. Mookherjee and D. Sanyal, "Design of an Adaptive Fuzzy-Bias SMC and Validation for a Rugged Electrohydraulic System," in *IEEE/ASME Transactions on Mechatronics*, vol. 20, no. 6, pp. 2708-2715, Dec. 2015.
- [25] J. Wang, Y. Gao, J. Qiu, and C.K. Ahn, "Sliding mode control for nonlinear systems by Takagi–Sugeno fuzzy model and delta operator approaches", IET Control Theory & Applications, 2016
- [26] T. Wang and J. Fei, "Adaptive Neural Control of Active Power Filter Using Fuzzy Sliding Mode Controller," in *IEEE Access*, vol. 4, no., pp. 6816-6822, 2016.
- [27] S. Wen, M. Z. Q. Chen, Z. Zeng, X. Yu and T. Huang, "Fuzzy Control for Uncertain Vehicle Active Suspension Systems via Dynamic Sliding-Mode Approach," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 47, no. 1, pp. 24-32, Jan. 2017.
- [28] J. Liu, Y. Gao, W. Luo and L. Wu, "Takagi–Sugeno fuzzy-model-based control of three-phase AC/DC voltage source converters using adaptive sliding mode technique," in *IET Control Theory & Applications*, vol. 11, no. 8, pp. 1255-1263, 5 12 2016.
- [29] J. Zhang, Y. Lin and G. Feng, "Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers," in *IEEE Transactions on Cybernetics*, vol. 45, no. 12, pp. 2880-2889, Dec. 2015.
- [30] X. X. Yin, Y. G. Lin, W. Li, H. W. Liu and Y. J. Gu, "Fuzzy-Logic Sliding-Mode Control Strategy for Extracting Maximum Wind Power," in *IEEE Transactions on Energy Conversion*, vol. 30, no. 4, pp. 1267-1278, Dec. 2015.
- [31] M. R. Soltanpour, P. Otadolajam and M. H. Khooban, "Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode," in *IET Science, Measurement & Technology*, vol. 9, no. 3, pp. 322-334, 5 2015.
- [32] A. Saghafinia, H. W. Ping, M. N. Uddin and K. S. Gaeid, "Adaptive Fuzzy Sliding-Mode Control Into Chattering-Free IM Drive," in *IEEE Transactions on Industry Applications*, vol. 51, no. 1, pp. 692-701, Jan.-Feb. 2015.
- [33] B. M. Patre, P. S. Londhe and R. M. Nagarale, "Fuzzy Sliding Mode Control for Spatial Control of Large Nuclear Reactor," in *IEEE Transactions on Nuclear Science*, vol. 62, no. 5, pp. 2255-2265, Oct. 2015.
- [34] R. R. Nair, L. Behera, V. Kumar and M. Jamshidi, "Multisatellite Formation Control for Remote Sensing Applications Using Artificial Potential Field and Adaptive Fuzzy Sliding Mode Control," in *IEEE Systems Journal*, vol. 9, no. 2, pp. 508-518, June 2015.

- [35] H. Li, J. Wang and P. Shi, "Output-Feedback Based Sliding Mode Control for Fuzzy Systems With Actuator Saturation," in *IEEE Transactions on Fuzzy Systems*, vol. 24, no. 6, pp. 1282-1293, Dec. 2016.
- [36] Y. Yang, C. Hua and X. Guan, "Adaptive Fuzzy Finite-Time Coordination Control for Networked Nonlinear Bilateral Teleoperation System," in *IEEE Transactions on Fuzzy Systems*, vol. 22, no. 3, pp. 631-641, June 2014.
- [37] R. J. Lian, "Adaptive Self-Organizing Fuzzy Sliding-Mode Radial Basis-Function Neural-Network Controller for Robotic Systems," in *IEEE Transactions on Industrial Electronics*, vol. 61, no. 3, pp. 1493-1503, March 2014.
- [38] M. A. Khanesar, O. Kaynak, S. Yin and H. Gao, "Adaptive Indirect Fuzzy Sliding Mode Controller for Networked Control Systems Subject to Time-Varying Network-Induced Time Delay," in *IEEE Transactions* on Fuzzy Systems, vol. 23, no. 1, pp. 205-214, Feb. 2015.
- [39] A. Farhoud and A. Erfanian, "Fully Automatic Control of Paraplegic FES Pedaling Using Higher-Order Sliding Mode and Fuzzy Logic Control," in *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 22, no. 3, pp. 533-542, May 2014.
- [40] Q. Gao, L. Liu, G. Feng and Y. Wang, "Universal Fuzzy Integral Sliding-Mode Controllers for Stochastic Nonlinear Systems," in *IEEE Transactions on Cybernetics*, vol. 44, no. 12, pp. 2658-2669, Dec. 2014.
- [41] Q. Gao, G. Feng, Z. Xi, Y. Wang and J. Qiu, "A New Design of Robust \${rm H}_{infty}\$ Sliding Mode Control for Uncertain Stochastic T-S Fuzzy Time-Delay Systems," in *IEEE Transactions on Cybernetics*, vol. 44, no. 9, pp. 1556-1566, Sept. 2014.
- [42] J. Huang, A. Zhang, H. Zhang, Z. Ren, J. Wang, L. Zhang, and C. Zhang, "Improved Direct Power Control for Rectifier Based on Fuzzy Sliding Mode," in *IEEE Transactions on Control Systems Technology*, vol. 22, no. 3, pp. 1174-1180, May 2014.
- [43] C. M. Lin and H. Y. Li, "Adaptive Dynamic Sliding-Mode Fuzzy CMAC for Voice Coil Motor Using Asymmetric Gaussian Membership Function," in *IEEE Transactions on Industrial Electronics*, vol. 61, no. 10, pp. 5662-5671, Oct. 2014.
- [44] T. Niknam and M. H. Khooban, "Fuzzy sliding mode control scheme for a class of non-linear uncertain chaotic systems," in *IET Science, Measurement & Technology*, vol. 7, no. 5, pp. 249-255, September 2013.
- [45] R. J. Lian, "Enhanced Adaptive Self-Organizing Fuzzy Sliding-Mode Controller for Active Suspension Systems," in *IEEE Transactions on Industrial Electronics*, vol. 60, no. 3, pp. 958-968, March 2013.
- [46] F. K. Yeh, "Attitude controller design of mini-unmanned aerial vehicles using fuzzy sliding-mode control degraded by white noise interference," in *IET Control Theory & Applications*, vol. 6, no. 9, pp. 1205-1212, June 14 2012].
- [47] V. Q. Leu, H. H. Choi and J. W. Jung, "Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer," in *IEEE Transactions on Power Electronics*, vol. 27, no. 3, pp. 1530-1539, March 2012.
- [48] M. Manceur, N. Essounbouli and A. Hamzaoui, "Second-Order Sliding Fuzzy Interval Type-2 Control for an Uncertain System With Real Application," in *IEEE Transactions on Fuzzy Systems*, vol. 20, no. 2, pp. 262-275, April 2012.
- [49] T. H. S. Li, C. C. Chen and Y. T. Su, "Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras," in *IEEE Transactions on Consumer Electronics*, vol. 58, no. 2, pp. 237-245, May 2012.
- [50] T. Orlowska-Kowalska, M. Kaminski and K. Szabat, "Implementation of a Sliding-Mode Controller With an Integral Function and Fuzzy Gain Value for the Electrical Drive With an Elastic Joint," in *IEEE Transactions on Industrial Electronics*, vol. 57, no. 4, pp. 1309-1317, April 2010

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

DRY SLIDING WEAR PROPERTIES OF ZA-ALLOY CONTAINING TRACES OF IMPURITIES WITH AND WITHOUT HEAT TREATMENT

Gurunagendra G R¹, Ravikeerthi C¹, Dr. B R Raju²

¹Associate Professor, Department of Mechanical Engineering, Global Academy of Technology, Bangalore, India

Assistant Professor, Department of Mechanical Engineering, Academy of Technology, Bangalore, India ²Professor and Head Department of Automobile Engineering, TOCE Bangalore

ABSTRACT

ZA-8,ZA-12,ZA-27 are the family of ZA alloys widely used as Low cost Bearing materials in High load and Low speed applications. These alloys with low cost, low energy requirement for shaping, excellent cast ability, and high strength properties are better than some bronze bearing alloys, but they still have restricted application especially due to the deterioration of mechanical and wear resistance properties at temperatures exceeding 100°C. Aluminium is one of the major alloying elements in Zn alloy systems where it imparts fluidity to the alloys. In practice, the amount of Al added to Zn-based alloys in order to attain good engineering properties varies over a wide range. Against this background, the present research work has been undertaken with an objective to explore the potential of ZA alloys as a bearing material and to investigate the effect of alloying elements at room temperature on the Tribological behaviour of the ZA alloy. Zinc and aluminium are low cost bearing materials compared to conventional bearing material and this work is an attempt to find a possible use of such economical materials which might gainfully be employed as low cost, high strength and wear resistant alloys.

KEYWORDS: High load, Low speed, bearing materials

1. INTRODUCTION

The group of zinc-aluminium (ZA) alloys was developed in 1970s and became a substitute for brass and cast malleable iron to produce the wear-resistant parts. These alloys with low cost, low energy requirement for shaping, excellent cast ability, and high strength properties are equivalent or better than some standard bronze bearing alloys, but they still have limited application especially due to the deterioration of mechanical and wear resistance properties at temperatures exceeding 100°C. Aluminium is one of the major alloying elements in Zn alloy systems where it imparts fluidity to the alloys. In practice, the amount of Al added to Zn-based alloys in order to

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

attain good engineering properties varies over a wide range. The effect of different Al contents (namely 8, 12, 20 and 27) on the microstructure and tensile properties of Zn based alloy has increased strength and wear resistance. Zinc-Aluminium alloys are known to possess excellent bearing properties particularly at high load and low speed. They have found increasing use for many applications and have competed effectively against copper, aluminium and iron-base foundry alloys. However, the elevated temperature (> 100° C) properties of zinc aluminium alloys are unsatisfactory and restrict their use in some applications. One promising approach to improve the elevated temperature properties was reinforcing the alloys with SiCfibers or particles, alumina particles and fibres, glass fibres etc.

All the zinc-aluminium alloys have excellent resistance to corrosion in a variety of environments. However, there has been a lack of specific corrosion data of zinc-aluminium based MMCs and their corrosion resistance to date, because of very limited use of zinc-aluminium alloys as matrix material for MMCs. Most of the commercial work on MMCs has focused on aluminium as the matrix metal. The combination of light weight, environmental resistance and favourable mechanical properties has made aluminium alloys very popular for use as a matrix metal. Aluminium and its alloys have been used as a matrix for a variety of reinforcements: continuous boron, Al2O3, SiC and graphite fibers, various particles, short fibers and whiskers. As a result, advanced metal matrix composites with improved mechanical, physical and tribological characteristics, were obtained. The ZA alloys are suitable for casting by sand, permanent mould, shell mould and high-pressure die casting methods. These alloys exhibit mechanical properties equal to or exceeding those of conventional zinc die casting alloys and those of cast iron, aluminium and copper alloys. In addition, they have excellent bearing properties, wear resistance and machinability. Advantage of cast properties include low melting temperatures and hence low melting energy consumption, increased die life and mould stability. They can be readily cast in thin sections in sand moulds. It is also appreciated that the microstructure of ZA alloys, as it is true for any alloy, is associated with various factors such as compositions of alloy, production techniques adopted etc., and that even a very small change in one of these factors can seriously affect the quality, performance of the material. Hence, this leads to the argument that the field of microstructure, phase formation and wear properties of ZA alloys with different compositions still remains open for investigation for various purposes in industry.

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

2. EXPERIMENTAL PROCEDURE OF WEAR TEST:

The Alloy was prepared using Liquid Metallurgy route using Pure Zinc (99% pure) and Aluminium (99% pure) using Weight method. Composition as shown in the Table 1.

Obtained by optical emission spectrum with traces of Impurities.													
Composition	CompositionZnAlSnCdCuFePbBiMgAgSbSi												
Percentage 88.480 9.8 0.094 0.007 0.01 0.600 0.032 0.08 0.236 0.008 0.264 0.353													

Dry sliding wear tests for different number of specimens was conducted by using a pin-on disc machine (Model: Wear & Friction Monitor TR-20) supplied by DUCOM is shown in Figure 1.

SPECIFICATIONS

 APPARATUS
 : TRIBOMETER (DUCOM PVT LTDBANGALORE)

 DISC ROTATION SPEED
 : 200-2000 RPM

 SLIDING SPEED
 : 0.5-100 M/S

 TRACK DIAMETER
 : 50-100 M/M

 WEAR RANGE
 : 1-2000 μ

 LOAD
 : 5-200 N

 POWER
 : 2KVA, 230V

 SPECIMENSTANDARD
 : ASTM GPS

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

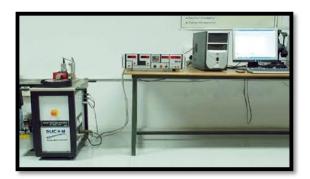


Figure 1: Pin on Disc Machine

The pin was held against the counter face of a rotating disc (EN31 steel disc) with wear track diameter 100 mm. The pin was loaded against the disc through a dead weight loading system. The wear test for all specimens was conducted under the normal loads of 1kg, 2kg and a sliding velocity of 2 and 4 m/s.

Wear tests were carried out for a total sliding distance of approximately 1250 m under similar conditions as discussed above. The pin samples were 30 mm in length and 6 mm in diameter. The surfaces of the pin samples were slides using emery paper (80 grit size) prior to test in order to ensure effective contact of fresh and flat surface with the steel disc. The samples and wear track were cleaned with acetone and weighed (up to an accuracy of 0.0001 gm using microbalance) prior to and after each test. The wear rate was calculated from the height loss technique and expressed in terms of wear volume loss per unit sliding distance.

In this experiment, the test was conducted with the following

Parameters:

- ➤ Load
- > Speed
- Distance

In the present experiment the parameters such as speed, time and load are kept constant throughout for all the experiments. These parameters are given in Table.

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

Pin material	ZA-alloy
Disc material	EN 31 steel
Pin dimension	Cylinder with diameter 6 mm height 30 mm
Sliding speed (rpm)	400
Normal load (kg)	1, 2, 3
Sliding distance (m)	1250

Table 2: Parameter taken constant during sliding wear test

3. PIN-ON-DISC TEST

In this study, Pin-on-Disc testing method was used for tribological characterization. The test procedure is as follows:

- Initially, pin surface was made flat such that it will support the load over its entire crosssection called first stage. This was achieved by the surfaces of the pin sample ground using emery paper (80 grit size) prior to testing
- Run-in-wear was performed in the next stage/ second stage. This stage avoids initial turbulent period associated with friction and wear curves
- Final stage/ third stage is the actual testing called constant/ steady state wear. This stage is the dynamic competition between material transfer processes (transfer of material from pin onto the disc and formation of wear debris and their subsequent removal). Before the test, both the pin and disc were cleaned with ethanol soaked cotton (Surappa et al 2007)

Before the start of each experiment, precautionary steps were taken to make sure that the load was applied in normal direction. Figure represents a schematic view of Pin-on-Disc setup.

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

Sl no.	Load (N)	Sliding Speed, S (rpm)	Sliding Distance, D (m)
1	10	400	1250
2	20	400	1250
3	30	400	1250

Table 3: Process	parameters	and levels	
1 4010 5. 1100055	parameters	and icvers	

WEAR TEST

Dry sliding wear tests for the ZA have been conducted using pin-on-disc Tribometer(m/s Ducom Bengaluru). The test have been conducted in air. Wear test have been conducted using cylindrical sample (ϕ 12mm*30mm) that had flat surface in contact region and the rounded corner. The pin is held stationary against counterface of 100mm diameter rotating disc made of En-32 steel having HRC65.

The wear test have been conducted under three normal loads 1kg, 2kg, 3kg and at fixed sliding speed of 2.094m/s. Each wear test have been carried out for the sliding distance of 1.8km. Tangential force has been monitored continuously. Height was is measured from graph using slope and converted to volume loss data and wear rate is determined.

4. WEAR CALCULATION

1. Area, Cross sectional Area= $A = \frac{\pi d^2}{4}$ 2. Volume loss, Volume loss = Cross sectional Area x Height loss 3. Wear rate Wear rate = Volume loss / Sliding distance 4. Wear resistance, Wear resistance = 1/ Wear rate 5. Specific wear rate, Specific wear rate = Wear rate/load

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

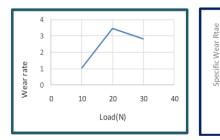
SI	Load		Height Loss			Time	Distance covered	Wear Rate	Friction Force	Coefficient of Friction
No	Kg	N	$H_1 \ \mu m$	H ₂ μm	Η1- Η2 μm	Sec	m	(mm ³ /m) ×10-3	Ν	
1	1	10	53.5	49.7	3.85	50	104.71	1.03	2.98	0.298
2	2	20	51.08	38.26	12.82	50	104.71	3.46	10.1	0.505
3	3	30	88.44	77.95	10.49	50	104.71	2.83	14.27	0.475

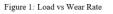
Table 4: Wear rate Results at as Cast condition

Load(N)	Wear resistance (m/mm ³)
10	970.87
20	288.91
30	353.09

Load(N)	Specific wear rate ×10 ⁻⁴ mm ^{3/} N m
10	1.03
20	1.73
30	0.943

2

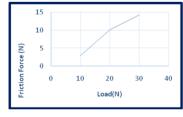

1.5

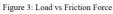

1

0.5

0

0

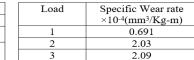

10

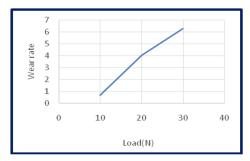

20

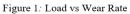
Load(N)

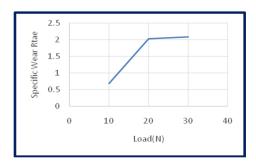
30

40

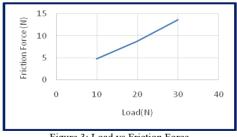


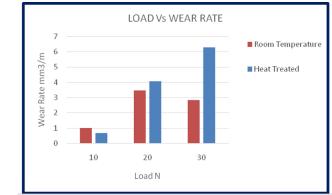

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226


Table 5: Wear rate Results after Heat Treatment


Sl No	Load	l	Height Loss		Time	Distance covered	Wear Rate	Friction Force	Coefficient of Friction	
	Kg	N	H ₁ μm	H ₂ μm	H_1-H_2 µm	Sec	m	(mm ³ /m) ×10- ³	N	
1	1	10	44.78	42.22	2.56	50	104.71	0.691	4.72	0.21
2	2	20	58.96	43.92	15.04	50	104.71	4.06	8.71	0.22
3	3	30	93.85	70.52	23.33	50	104.71	6.29	13.62	0.22

Load	Wear resistance (m/mm ³)
1	1447.17
2	246.3
3	158.98




Figure 3: Load vs Friction Force

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

COMPARISON CHART:

5. CONCLUSION

ZA alloy is a competitive Bearing alloy that shows improvement in both Mechanical and Tribological properties compared with phosphor bronze, SAE 660 alloy and Cast Iron. As a First step towards developing a new material for the tribological applications for component used in various industrial applications.

Finally, at the end of completing the dry sliding wear test on the developed Low Aluminium and High Zinc alloy (ZA) there is a very low wear rate observed for heat treated alloy when compared to room temperature for Normal load of 10N, but wear rate increases at higher loaded for heat treated alloy.

There is more scope for further research by changing the process of fabrication of alloy and also Reinforcing with hard phase Reinforcements like Sic, Al_2O_3 , graphite, MoS_2 etc.

Emerging Trends in Mechanical Engineering Proceedings of the International Conference, ETME-2017, 27 & 28 December, 2017, Pg: -217-226

BIBLOGRAPHY

1.S.Rajasekaran,N.K.Udayashankar,andJagannathNayak:T4andT6Treatmentof6061Al-15Vol.%SiCPCompositeInternational Scholarly Research Network ISRN Materials Science Volume 2012, Article ID 374719, 5 pages doi:10.5402/2012.

2. Prasad, B. K. A.K.Patwardhan, A.H.Yegneswaran "Dry sliding wear characteristics of some Zincaluminium alloys: a comparative study with a conventional bearing bronze at a slow speed", Wear, Volume199, 1996, 142-151

3. B.K. Prasad, A.K. Patwardhan, and A.H. Yegneswaran, "Characterization of the wear response of a modified Zinc-based alloy Vis-Avis a conventional Zinc-based alloy and a bearing bronze", Metall. Mater. Trans., Vol 27A, 1996, 3513-3523

4. Yuanyuan, Tungwai, WeiXia, Wen Zhang "Effect of Mn content on the tribological behaviour of ZA27% Al-2% Cu alloy" Wear, Volume 198, 1996, 129-135.

5 B. Bobic, S. Mitrovic, M. Babic, I. Bobic: Corrosion of Aluminium and Zinc-Aluminium Alloys Based Metal-Matrix Composites, Tribology in Industry, Vol. 31, No. 3&4, pp. 44-52,2009.

6. Kubel, E.J.: Expanding horizons for ZA alloys. Adv. Mater. Process. Inc. Met. Prog. 7, 51–57 (1987)

7. Goodwin, F., Ponikvar, A.: Engineering properties of zinc alloys, 3rd edn. ILZRO, Durham (1989)

8. Barnhurst, R.J.: Designing zinc alloy bearings. J. Mater. Des. 12, 279-285 (1990)

9. Pandey, J.P., Prasad, B.K.: Sliding wear response of a zinc-based alloy compared to a copper-based alloy. Metall. Mater. Trans. 29, 1245–1255 (1989)

10. Rac, A., Babic ´, M., Ninkovic ´, R.: Theory and practice of Zn-Al sliding bearings. J. Balkan Tribol. Assoc. 7, 234–240 (2001).

11. Babic, M., Ninkovic, R.: Zn-Al alloys as tribomaterials. Tribol. Ind. 26, 3-7 (2004)

12. Babic, M., Ninkovic, R., Rac, A.: Sliding wear behavior of Zn-Al alloys in conditions of boundary lubrication. The Annals of University "Duna rea De Jos" of Galat, i Fascicle VIII. Tribology, 60–64 (2005) 13. Choudhury, P., Das, S., Datta, B.K.: Effect of Ni on the wear behavior of a zinc-aluminum alloy. J. Mater. Sci. 37, 2103–2107 (2002). doi:10.1023/A:1015297904125

14. Sharma, S.C., Girish, B.M., Kamath, R., Satish, B.M.: Graphite particles reinforced ZA-27 alloy composite materials for journal bearing application. Wear 219, 162–168 (1998). doi:10.1016/ S0043-1648(98)00188-4

15. Gervais, E., Barnhurst, R.J., Loong, C.A.: An analysis of selected properties of ZA alloys. J. Met. 37, 43–47 (1985)

16. Zhu, Y.H., Biao, Y., Wei, H.: Bearing wear resistance of monotectoid Zn-Al based alloy (ZA-35). J. Mar. Sci. Technol. 11, 109–113 (1995)

17. Lyon, R.: High strength zinc alloys for reengineering applications in the motor car. Met. Mater. 1, 55-57 (1985)

18. Bobic, I., Ninkovic, R., Babic, M.: Structural and mechanical characteristics of composites with base matrix of RAR27 alloy reinforced with Al2O3 and SiC particles. Tribol. Ind. 26, 21–26 (2004)

19. Prasad, B.K., Patwardhan, A.K., Yegneswaran, A.H.: Microstructure–property characterization of some Zn-Al alloys: effects of heat treatment parameters. Z. Metallk. 87, 967–972 (1996)

20. Prasad, B.K.: Influence of heat treatment parameters on the lubricated sliding wear behavior of a zinc-based alloy. Wear 257, 1137–1144 (2004). doi:10.1016/j.wear.2004.07.006

		a not a first		THE OX ognised by the Govt. o B	FORD CO of Karnataka, A Approve Recognisec ommanahalli, Ph: 080-617:	DUCATION SOCIET DLLEGE OF ENG filiated to Visvesvaraya Tec ed by A.I.C.T.E. New Delh by UGC Under Section Hosur Road, Bangalore - 54601/602, Fax: 080 - 25 eoxford.edu Web: www.th	INEERING chnological University, Belagavi. ii. 2(f) 560 068. 730551		
SI.NO	Name of the teacher	Title of the book/chapt ers published	Title of the paper	Title of the proceedings of the conference	Year of publicatio n	ISBN/ISSN number of the proceeding	Department Name	Name of the publisher	Weblink
1	Dr Preeta Sharan	Advanced Mobile Technologie s for Secure Transaction Processing: Emerging Research and Opportuniti es			2017		ECE	IGI Global	https://www.igi- global.com/boo k/advanced- mobile- technologies- secure- transaction/1787 15
2	Debpriyo Roy; Dhruva R Beltur; Preeta Sharan		Detection of Marijuana in blood using GaAs substrate based photonic sensor	2017 International Conference on Circuits, Controls, and Communications (CCUBE)	2017	978-1-5386-0615-5	ECE	IEEE Explorer	https://ieeexplor e.ieee.org/docu ment/8394161
3	S. Chaitra; C. Veena; K. Srinivas Rao; Preeta Sharan		SPR based biosensor for the detection of abnormal growth of tissues	2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)	2017	978-1-5090-5913-3	ECE	IEEE Explorer	https://ieeexplor e.ieee.org/docu ment/8067918

				ognised by the Govt. o B	of Karnataka, A Approve Recognised ommanahalli, Ph: 080-6175	ed by A.I.C.T.E. New Delh by UGC Under Section Hosur Road, Bangalore - 54601/602, Fax: 080 - 25	chnological University, Belagavi. ii. 2(f) · 560 068. 730551		
4	Manjula.C		Command Driven Scalable & Programma ble FPGA Based Digital Test Pattern Generator	International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)	2017	eoxford.edu Web: www.th 978-1-5386-2361-9	EEE	IEEE Explorer	https://ieeexplor e.ieee.org/docu ment/8284545
5	Someswari.T		Probing the Efficiency of Research contribution towards Fuzzy Sliding mode Controller	• Internationa l Conference on Circuits, Controls, and Communications (CCUBE)	2017	978-1-5386-0615-5	EEE	IEEE Explorer	https://www.res earchgate.net/pu blication/32599 3592_Probing_t he_efficacy_of_ research_contrib ution_towards_f uzzy_sliding_m ode_controller
6	Dr B Raju	Dry sliding wear properties of ZA alloy containing impurities with and without treatment		Emerging Trends in Mechanical Engineering Proceedings of the International Conference,	2017	2321-3051	Automobile	International Journal of Aeronautical and Mechanical Engineering	http://www.ijra me.com/wp- content/uploads/ 2019/02/20.pdf

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

Fetcl 1974

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi.

Approved by A.I.C.T.E. New Delhi.

Recognised by UGC Under Section 2(f)

Bommanahalli, Hosur Road, Bangalore - 560 068.

Ph: 080-61754601/602, Fax: 080 - 25730551

E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

SLN O	Name of the teacher	Title of the book/chapter s published	Title of the paper	Title of the proceedings of the conference	Name of the conference	National / International	Year of publicatio n	ISBN/ISSN number of the proceeding	Affiliating Institute at the time of publicatio n	Name of the publisher
1	Arvind Raju; Aditya Prakash; Anup M Upadhyaya; Preet a Sharan		Design and Analysis of Pipeline Leakage Detection Using Fibre Bragg Grating Sensor	2018 3rd International Conference on Communication and Electronics Systems (ICCES)	ICCES 2018	International	2018	978-1-5386-4765- 3	The Oxford College of Engineerin g	IEEE Exlorer
2	Rajinder Tiwari; Anil Kumar; Preeta Sharan		Design and Implementatio n of 4:1 Multiplexer for Reversible ALU Using QCA	2018 2nd International Conference on Micro-Electronics and Telecommunicatio n Engineering (ICMETE)	ICMETE 2018	International	2018	978-1-5386-6918- 1	The Oxford College of Engineerin g	IEEE Exlorer
3	Bishwajeet Pandey; Preeta Sharan; Lubna Luxmi Dhirani; D M Akbar Hussain		Role of Scaling of Frequency and Toggle Rate in POD IO Standards Based Energy Efficient ALU Design on Ultra Scale FPGA	2018 10th International Conference on Computational Intelligence and Communication Networks (CICN)	CICN 2018	International	2018	2472-7555	The Oxford College of Engineerin g	IEEE Exlorer
4	Ketan Pandit; Karthik Rao; Preeta Sharan; Anup Upadhyaya		MOEMS based sensor for tire carcass deflection monitoring in automobile using photonic crystals	2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)	ICAECC 2018	International	2018	:978-1-5386-3785- 2	The Oxford College of Engineerin g	IEEE Exlorer

3/28/2021	Desi	ign and Analysis	of Pipeline Leakag	e Detection Using	g Fibre Bragg G	rating Sensor IEEE Co	onference Publica	tion IEEE Xplore
IEEE.org	IEEE Xplc	re IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In Đ
≡			Browse 🗸	My Settings 🗸	Help 🗸	Institutional Sig	n In	
				Institution	al Sign In			
	All		•				۹	
							ADVANCED SEAR	СН
Conferences >	2018 3rd Int	ernational Confer	0					
•		-	Pipeline Le	akage Det	tection Us	sing Fibre		
		Sensor						
Publisher: II		Cite This	Cite This	🛆 PDF				
Arvind Raju ;	Aditya Prak	ash; Anup M Up	oadhyaya ; Preeta Sh	aran All Autho	ors			
					<	Export to	More Like This	6
36 Full Text Views					C	Collabratec Alerts		ction in Pipelines Using emperature and DAS
TOXE VIEWS						Manage Content Alerts	Acoustic Fiber-Opti	c Sensor Carnahan Conference
						Add to Citation	Published: 2018	
						Alerts	Development of Fik Leak Detection in L Storage Pipelines	per Optic Sensors for Inderground Energy
							2018 6th Edition of Conference on Win Embedded System	eless Networks &
Abstra		Downl					Published: 2018	
Document S		PDF						Show More
II. MODELLI			eline is the main tra	• •	-	chemically stable to detect changes in		
AND PRIN OF OPER		strain View m	-					
IV. RESULT		Metadata Abstract:						
» CONCLUSI			e main transportatio disastrous. FBG us			stable substance. A ges in strain along		
Author	rs	•	e pipeline and preve or leakage detection					
Figure	es		uring the flow analy dard pipe is conside			-		
Referen	ces		each increase in bur al industries future.	st pressure in the	e pipe. Proposed	d work will beneficial		
Keywor	rds	Published in 2	2018 3rd Internation	al Conference or	1 Communicatio	n and Electronics		
Metric	s	Systems (ICCE			. communicatio			
More Like	e This	Date of Confer	ence: 15-16 Oct. 2	018 INSPEC	C Accession Nu	Imber: 18724000		
		Date Added to	IEEE Xplore: 30 M	ay 2019 DOI: 10).1109/CESYS.2	018.8724113		

3/2021 Desig	gn and Ana	alysis of Pipeline Leakage Detec	tion Using Fibre Bragg Grating Senso	r IEEE Conference Publication	IEEE Xplore
	Electro	ormation: onic ISBN:978-1-5386-4765-3	Publisher: IEEE Conference Location: Coimbatore,	India	
		on Demand(PoD) 978-1-5386-4766-0			
		:= c	ontents		
	througho that carr transpor would st his life w that it is mainly b monitore up large demando	uction a liquids and chemical gasses ^[1] but the world. There are pipes the y other fuels such as biofuels, oi tation of these liquids were to sto op. Man would not be able to go yould come to a standstill. One pi hard to keep a traignoin the Cupter ecause the pipes are laid under ed. even after they realise that th areas of land to find where the li- ed for something to keep track a s. That's where the Fibre Bragg (at carry refined petroleum pipes Is and natural gas ^[2] . If the op, the world as we know it about his day to day duties and reblem manufacturers face is none Recitiving stalled. This is ground and it can't be ere is a leak, they have to dig eak is coming from. This nd monitor the underground		
	Authors		~		
	Figures		~		
	Referenc	es	~		
	Keyword	s	~		
	Metrics		~		
IEEE Personal Acco	ount	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PAS	SWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f in ¥
		VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

TECHNICAL INTERESTS

CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

Published in: 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)

Metrics

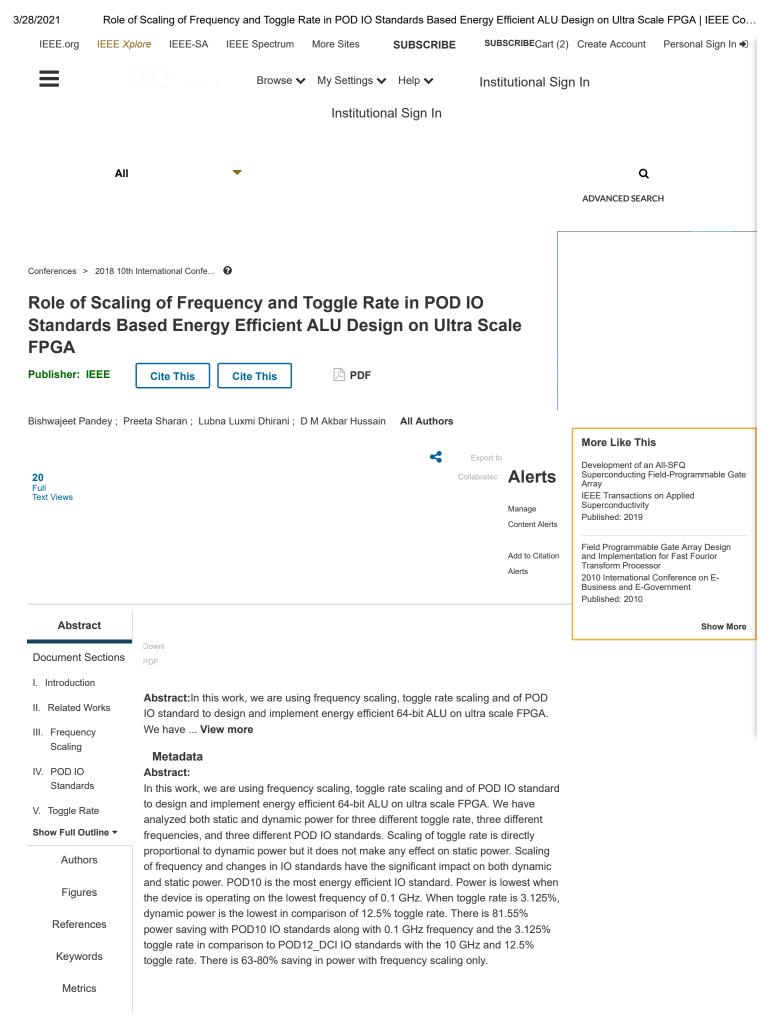
Citations Keywords

More Like This

Date of Conference: 20-21 Sept. 2018 INSPEC Accession Number: 18791787

Date Added to IEEE Xplore: 24 June 2019 DOI: 10.1109/ICMETE.2018.00050

ISBN Information: Electronic ISBN:978-1-5386-6918-1 Print on Demand(PoD) ISBN:978-1-5386-6919-8 Publisher: IEEE


Conference Location: Ghaziabad, India

Contents

I. INTRODUCTION

The characterization and scaling of the mixed signal processing circuits are converging towards the range of nanoscale design i.e. from microns to nano scale. Due to this phenomenon, the domain of the fabrication of the device is growing at a guite fast rate. A lot of research is going on now a days to find the solution for this and then we have come out an innovative approach which is based on the quantum computing techniques i.e. with the migration of size of the component from microns to nano scale. This technology is called as the nanotechnology which is based on the nano scale of the device and makes the use of light or photons as its basic principle of operation. Now the researchers are looking for some sophisticated tool with which one can carry out the simulation of the characterization of the components in nao range. Finally, researchers come out with one of the most proficient tool of simulation i.e. QCA i.e. Quantum Cellular Automata. The most dominant module of this tool is the quantum dots which are responsible for the probable transition of the charge carriers of the digital circuits. With the use of this tool, one can Sessingin varCoustiBuel Ratadbingings as well as the universal gates which in turn are responsible for the further development of processors. The Reversible logic is another very promising and upcoming computing design that presents various techniques of designing the computers which are capable of executing the task without any heat dissipation. This approach is basically an extension of the concepts of the quantum which is applied in the design of latest machines in digital domain. The operational performance of this approach is somewhat dependent on the concepts of the quantum electrodynamics i.e. the availability of the charge carriers within a particular time of transition of the carrier. In addition to this, the basic difference in between the traditional logic and the reversible logic approach of the implementation of the various circuits is that in this later approach, the device has got individual lines for input and output purpose with a negligible amount of heat dissipation. On the other hand, in the traditional approach i.e. in irreversible logic there is a considerable amount of heat dissipation with other limitations.

Authors	~
Figures	~
References	~
Citations	~

3/28/2021 Role of Scaling of Frequency and Toggle Rate in POD IO Standards Based Energy Efficient ALU Design on Ultra Scale FPGA | IEEE Co...

More Like This

Published in: 2018 10th International Cor Communication Networks (CICN)	nference on Computational Intelligence and
Date of Conference: 17-19 Aug. 2018	INSPEC Accession Number: 19048254
Date Added to IEEE Xplore: 14 October	DOI: 10.1109/CICN.2018.8864933
2019	Publisher: IEEE
ISBN Information: Electronic ISBN:978-1-5386-2578-1 Print on Demand(PoD) ISBN:978-1-5386-2579-8	Conference Location: Esbjerg, Denmark
ISSN Information: Electronic ISSN: 2472-7555 Print on Demand(PoD) ISSN: 2375-	
8244	
	Contents

I. Introduction

Every processor has some predefine maximum frequency or clock rate on which chip like central processing unit (CPU), or one core of multicore processor operates called processor speed. CPU frequency measured in Hertz. Processor speed of the first microprocessor was around 1 MHz (0.001 GHz). The world record of CPU frequency set on 29th August 2014 was 8.723 GHz [1]. The highest clock speeds (requiring cooling through liquid nitrogen) are stuck between 8.5 GHz and 9 GHz [2]. Intel commercial processor delivers more than 3 GHz and AMD commercial processor delivers approx. 5 GHz processor. It is possible to develop a processor with 10 GHz speed. But, power is directly proportional to frequency. With the increase in processing speed, more heat will generate eventually cooling mechanism will not Sign in to Continue Reading for such type of processor. Therefore, we are also not crossing threshold of 10 GHz and operating our ALU design for 0.1 GHz, 1 GHz and 10 GHz processing speed. We also analyzed both dynamic and static power dissipation with scaling of toggle rate (shown in Fig. 1) on these three frequencies in order to check operational stability and power requirement of our design. This analysis confirms computability of our design with the different type of existing processor. Also, we are using POD IO standards in our 64-bit ALU design. As we know that, SSTL IO standard was used in DDR3 memory. This POD has replaced SSTL in DDR4 memory. Figure 1:

Parameters taken for energy efficient ALU design

Authors	~
Figures	~
References	~
Keywords	~
Metrics	~

3/28/2021	MOEMS	S based sen	sor for t	ire carcass def	lection monitoring	in automobile	using photonic cryst	tals IEEE Co	onference Publication IEEE	Ξ
IEEE.org	IEEE Xplo	ore IEEE-	SA IE	EEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECa	rt (2) Create	Account Personal Sign In	•
				Browse 🗸	 My Settings 	Help 🗸	Institutional	Sign In		
					Institution	al Sign In				
	All			•					۹	
								ADVAN	NCED SEARCH	
Conferences >	2018 Secon	nd International	Con							
MOEMS	based	d senso	or for	tire card	ass deflec	tion mor	nitoring in			
				ic crysta			0			
Publisher: II	EEE (Cite This		Cite This	PDF					
Ketan Pandit ·	· Karthik Ra	ao · Preeta S	haran ·	Anup Upadhyay	a All Authors					
Retail Failur,			naian ,					 		
50						<	Export to Collabratec Alert		Like This	
Full Text Views							Manage	Finite di photoni	lifference time domain analysis of a ic crystal substrate patch antenna EEE Antennas and Propagation	à
							Content Ale	Society	/ International Symposium ned: 2005	
							Add to Cita	WONOIL	thic silicon photonic crystal slab fibe	er
							Alerts		sor EEE/LEOS International Conference ical MEMS and Nanophotonics	e
Abstra	act							Publish	ned: 2009	
Document S		Downl							Show Mor	re
I. Introduction		PDF								
II. Methodolo							an important role ir			
III. Design Pi	rocess	c View m		r economy and	ride comiori. Roa	la irregularities	causes deflection o	DI		
IV. Operation	n	Metadat	a							
V. Results Ar	nd	Abstract:	ssential	automotive co	mponent, since it j	plavs an impor	tant role in safety			
Discussion		mobility, fue	el econo	my and ride co	mfort. Road irregu	ularities causes	deflection of carca			
Show Full Ou	itline 🔻			•			ock. This causes tire the automobile in th			
Author	rs	long run. In	this pro	ject, MOEMS (Micro Opto-Electr	ro Mechanical S	System) based sens leflection and to stu	sor		
Figure	es	its characte	eristics ir	n order to desig	n a more efficient	automobile. T	he MOEMS device n inward displaceme			
Referen	ices	of the diele	ctric slal	bs. The finite-d	ifference time-don	nain(FDTD) me	•			
Keywor	rds	displaceme	nt occui	rring (of the die	lectric slabs) will o	change the dim				
Metric	s	change in s	pacing	alters the propa	agation virtue of el	lectromagnetic				
More Like	e This	shift in freq	uency w	vith high quality		66 was obtaine	ed by displacing the			

Published in: 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)

Date of Conference: 9-10 Feb. 2018	INSPEC Accession Number: 18133301
Date Added to IEEE Xplore: 04 October	DOI: 10.1109/ICAECC.2018.8479484
2018	Publisher: IEEE
ISBN Information: Electronic ISBN:978-1-5386-3785-2 Print on Demand(PoD) ISBN:978-1-5386-3786-9	Conference Location: Bangalore, India

Contents

I. Introduction

A tire is an advanced engineering product made of rubber, fiber, synthetic polymers, steel etc. [1] Tires are the only point of contact with the road and the only means to aid the transfer forces between the ground surface (road) and automobile. They also generate forces necessary to control the **Sigorirotoil@oThieyuenRetapliog**ide sufficient traction, excellent road holding capabilities, efficient cornering property, appreciable maneuvering ability, low rolling resistance [1]–[3] and they should also aid the suspension in absorbing road shock. This makes them a very important vehicular component [2].

Authors	~
Figures	~
References	~
Keywords	~
Metrics	~

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f in ¥
	VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	
		TECHNICAL INTERESTS	CONTACT & SUPPORT	

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi.

Recognised by UGC Under Section 2(f)

Bommanahalli, Hosur Road, Bangalore - 560 068.

Ph: 080-61754601/602, Fax: 080 - 25730551

E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

Sl.N O	Name of the teacher	Title of the book/chapte rs published	Title of the paper	Title of the proceedings of the conference	Year of publicatio n	ISBN/ISSN number of the proceeding	Departme nt Name	Name of the publisher	Weblink
1	Arvind Raju; Aditya Prakash; Anup M Upadhyaya; Pree ta Sharan	-	Design and Analysis of Pipeline Leakage Detection Using Fibre Bragg Grating Sensor	2018 3rd International Conference on Communication and Electronics Systems (ICCES)	2018	978-1-5386- 4765-3	ECE	IEEE Exlorer	https://ieeexplore.ieee.org/document/8724 113
2	Rajinder Tiwari; Anil Kumar; Preeta Sharan	-	Design and Implementatio n of 4:1 Multiplexer for Reversible ALU Using QCA	2018 2nd International Conference on Micro-Electronics and Telecommunicati on Engineering (ICMETE)	2018	978-1-5386- 6918-1	ECE	IEEE Exlorer	https://ieeexplore.ieee.org/document/8742 880
3	Bishwajeet Pandey; Preeta Sharan; Lubna Luxmi Dhirani; D M Akbar Hussain	-	Role of Scaling of Frequency and Toggle Rate in POD IO Standards Based Energy Efficient ALU Design on Ultra Scale FPGA	2018 10th International Conference on Computational Intelligence and Communication Networks (CICN)	2018	2472-7555	ECE	IEEE Exlorer	https://ieeexplore.ieee.org/document/8864 933
4	Ketan Pandit; Karthik Rao; Preeta Sharan; Anup Upadhyaya	-	MOEMS based sensor for tire carcass deflection monitoring in automobile using photonic crystals	2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)	2018	:978-1-5386- 3785-2	ECE	IEEE Exlorer	https://ieeexplore.ieee.org/document/8479 484

	CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING (Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi. Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551 Email: engprincipal@theoxford.edu Web: www.theoxfordengg.org									
Sl.NO	Name of the teacher	Title of the book/chapters published	Title of the paper	Title of the proceedings of the conference	Name of the conference	National / International	Year of publication	ISBN/ISSN number of the proceeding	Affiliating Institute at the time of publication	Name of the publisher
1	Afzal Shaikh; Preeta Sharan; Manju Devi		Power Analysis of Photonic Sensor for Detection of E-coli in Water	2019 Workshop on Recent Advances in Photonics (WRAP)	WRAP 2019	International	2019	978-1-7281-4749-9	The Oxford College of Engineering, Bangalore	IEEE Explorer
2	Indira Bahaddur; M.R. Tejaswini; Santhosh Kumar T.C.; Preeta Sharan; P. C. Srikanth		2D Photonic Crystal Cantilever Resonator Pressure Sensor	2019 Workshop on Recent Advances in Photonics (WRAP)	WRAP 2019	International	2019	978-1-7281-4749-9	The Oxford College of Engineering, Bangalore	IEEE Explorer
3	Patil H.J., Indumathi T.S., Sharan P., Nandi S		Interpretation of Photonic Crystals with Hexagonal Symmetry	International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing	ICIMIUC 2019	International	2019	978-3-030-22262-8	The Oxford College of Engineering, Bangalore	IEEE Explorer
4	Anup M. Upadhyaya; Maneesh C. Srivastava; Preeta Sharan; Yashaswini P.R.Srikanth P.C		Micro mechanical deformation sensor based on ultra sensitive photonic crystal membrane	2019 Workshop on Recent Advances in Photonics (WRAP)	WRAP 2019	International	2019	978-1-7281-4749-9	The Oxford College of Engineering, Bangalore	IEEE Explorer

		figure retronte		THE OXF d by the Govt. of Bor	CORD COLL Karnataka, Affiliat Approved by Recognised by mmanahalli, Hoso Ph: 080-6175460	ATION SOCH LEGE OF EN ed to Visvesvaraya y A.I.C.T.E. New D UGC Under Secti ur Road, Bangalor 1/602, Fax: 080 - ord.edu Web: www	GINEERI Technological U eelhi. on 2(f) e - 560 068. 25730551	Jniversity, Belagavi.		
5	Anup M Upadhyaya; Maneesh Srivastava; Preeta Sharan; T Srinivas		Performance Analysis of Optical MEMS Based Pressure Sensor Using Ring Resonators Structure on Circular Diaphragm	TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)	TENCON 2019		2019	978-1-7281-1895-6	The Oxford College of Engineering, Bangalore	IEEE Explorer

3/28/2021		Power Ana	lysis of Photonic S	Sensor for Detection	on of E-coli in W	ater IEEE Conference	Publication IEE	E Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In Đ
			Browse 🗸	 My Settings 	Help 🗸	Institutional Sig	n In	
				Institution	al Sign In			
	All		•				Q	
							ADVANCED SEAR	СН
Conferences >	2019 Workshop o	on Recent Advar	n 🕜					
Power A	nalysis	of Phot	onic Senso	or for Dete	ction of E	-coli in		
Water								
Publisher: I	EEE Ci	ite This	Cite This	🕒 PDF				
Afzal Shaikh ;	Preeta Sharan	;Manju Devi	All Authors					
					<	Export to		
15 Full					-	Collabratec Alerts	More Like This	Biosensor using Silicon
Text Views						Manage	Two- Dimensional I 3rd IEEE Internatio Group IV Photonics	Photonic Crystal nal Conference on
						Content Alerts	Published: 2006	
						Add to Citation Alerts	High Sensitivity Fa Silicon Photonic Cr Sensor	no-Like Rod-Type ystal Refractive Index
							Artificial Materials f Phenomena (Meta	
Abstra	ct	nl					Published: 2020	Charry Marra
Document S								Show More
I. Introduction	Abs			•		hich contains Silicon		
III. SENSOR		circular rods /iew more	s, made in a squar	e lattice structure.	. The input point	has a light source		
DESIGN		letadata						
IV. SIMULAT RESULTS		stract: e optical phot	onic crystal sense	or design is propos	sed, which conta	ains Silicon (Si)		
V. CONCLUS	SION			ttice structure. The output points to ob		-		
Author				al structure and po re index value and	-			
Figure				RI bacteria in wate sed different struc		alyzed and plotted. new design of 2D		
Referen				r output, amplitude oposed structure i		tor for different Cantilever structure		
Keywor	-	iving very hig	gh quality factor of	25954.				
Metric	Pul	olished in: 2	019 Workshop on	Recent Advances	s in Photonics (\	VRAP)		
More Like	This Dat	e of Confere	ence: 13-14 Dec.	2019 INSPE	C Accession N	umber: 19446606		

Power Analysis of Photonic Sensor for Detection of E-coli in Water | IEEE Conference Publication | IEEE Xplore

Date Added to IEEE Xplore: 27 February DOI: 10.1109/WRAP47485.2019.9013691

Publisher: IEEE

ISBN Information:	_
Electronic ISBN:978-1-7281-4749-9	С
Print on Demand(PoD)	
ISBN:978-1-7281-4750-5	

Conference Location: Guwahati, India

```
E Contents
```

I. Introduction

2020

The power splitter is a critical component in a silicon chip. The prominent applications of silicon chips include photonic computing, long haul fiber communication, and bio-photonic sensing. Photonic Crystals (PC) are dielectric formation with periodical spatial rotations of the refractive index on the order of the wavelength of the light [1], [2]. Photonic bandgap can be realized and artificially introduce defects to control the light emanation and transmission and trapping of the photons. The photonic bandgap (PBG) formation due to periodicity and the electromagnetic wave propagation gets forbidden for all wave vectors inside this bandgap. Therefore, the detection of the unwanted and harmful content which is present in water is a crucial issue in decimating its adverse impact on public health and hygiene. So the determination of Escherichia coli (E-coli) and observation of the power for a different structure is Seissienttal Clorithic upatien and we used RI value of analyte i.e E-coli with RI value of 1.388, the harmful content present in water. Power splitting technique is performed using 2D and 2D slab PC line defect waveguides by investigating different structure for 1x2. For power splitter experiment, the required components are input and output waveguide channels which act like branches of the splitter. The intersect point from where the branches are coming out is called a junction [2]. From the intersection of power division, one input and two output branches form 120° waveguide bend with each other [3]. Further, the two output branches make an extra 60° bend with the input branch. To perform the function for the power splitter, the transmission of light power should be maximum without suffering any reflection. The efficient and well-executed design of waveguide bends is essential to achieve the above objectives.

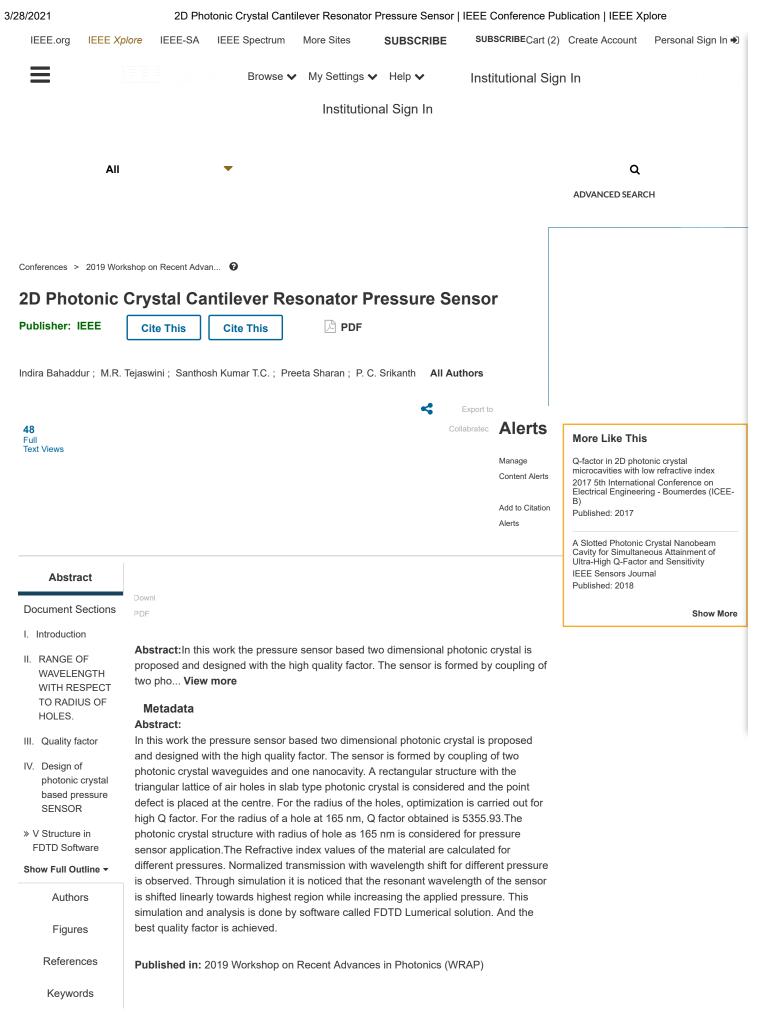
Authors	\sim
Figures	~
References	~
Keywords	~
Metrics	~

IEEE Personal Account

Purchase Details

Profile Information

Need Help?


Follow

f in ¥

CHANGE USERNAME/PASSWORD

PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS

COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT

3/28/2021 2D Photonic Crystal Cantilever Resonator Pressure Sensor | IEEE Conference Publication | IEEE Xplore Date of Conference: 13-14 Dec. 2019 **INSPEC Accession Number:** 19446630 Metrics Date Added to IEEE Xplore: 27 February DOI: 10.1109/WRAP47485.2019.9013843 More Like This 2020 Publisher: IEEE **ISBN** Information: Conference Location: Guwahati, India Electronic ISBN:978-1-7281-4749-9 Print on Demand(PoD) ISBN:978-1-7281-4750-5 Contents I. Introduction The photonic crystal is composed of periodic dielectric or dielectric nanostructure that has both low and high dielectric constant (refractive index) to affect the light wave to pass inside the structure. By introducing line and point defect it is possible to pass the light in the photonic band gap(PBG) The classifica Sogminated Countinists Reading imensional, two dimensional and three dimensional photonic crystals. The pressure sensor based 2Dimensional photonic crystals are receiving attention because of its simple structure, small size and better confinement of light. [1] Authors **Figures** References **Keywords Metrics IEEE Personal Account Purchase Details Profile Information Need Help?** Follow CHANGE USERNAME/PASSWORD PAYMENT OPTIONS COMMUNICATIONS PREFERENCES US & CANADA: +1 800 678 4333 f in 🎔 VIEW PURCHASED DOCUMENTS PROFESSION AND EDUCATION WORLDWIDE: +1 732 981 0060 TECHNICAL INTERESTS CONTACT & SUPPORT

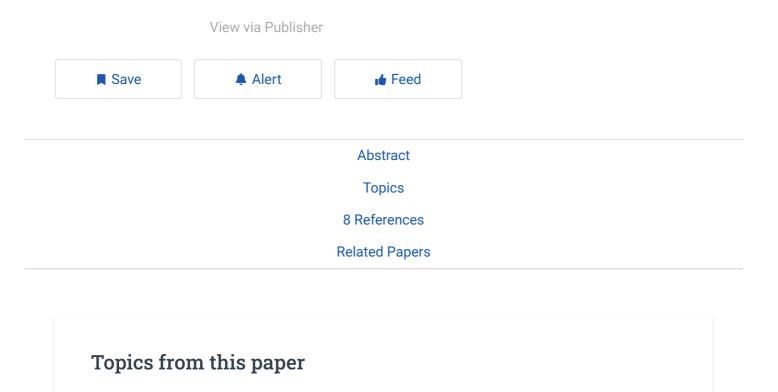
About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

Search 195,620,099 papers...

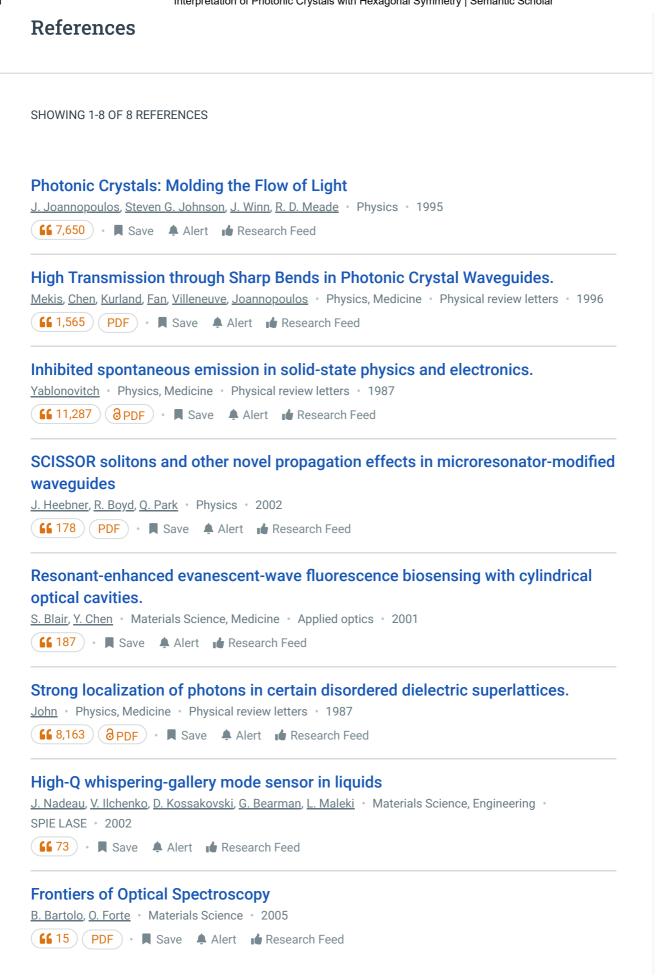

Search Q

DOI: 10.1007/978-3-030-22263-5_86 · Corpus ID: 195353098

Interpretation of Photonic Crystals with Hexagonal Symmetry

Harshada J. Patil, T. Indumathi, Preeta Sharan, Somesh Nandi less Published in IMIS 2019 • Computer Science

Photonic crystals provide us excellent opportunity to build sensors and other vital components used in industries or labs because they can block electromagnetic waves propagating through them at certain frequencies and allow few. This property of selective allowance can be exploited by carefully studying the properties of light propagating through them and also the media through which it is travelling. Photonic crystals are well known for their flexibility and it is this convenience of them... Expand


Sensor

By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License

ACCEPT & CONTINUE

Share This Paper 🗾 🗗 🔗 🖂

Sign In

By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License

ACCEPT & CONTINUE

Related Papers

✓ Show More

2/0

By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License

ACCEPT & CONTINUE

What Is Semantic Scholar?

Semantic Scholar is a free, Al-powered research tool for scientific literature, based at the Allen Institute for Al.

Learn More

About Us	Team	Librarians
Publishers	Datasets	Tutorials
Beta Program	Open Corpus	FAQ
Contact	Supp.ai	API

About Research Resources

Proudly built by AI2 Collaborators & Attributions • Terms of Service • Privacy Policy

By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License

ACCEPT & CONTINUE

3/28/2021	Micro me	chanical defo	ormation sensor l	pased on ultra sens	itive photonic cr	ystal membrane IEEE	Conference Public	cation IEEE Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🎝
			Browse	✓ My Settings ✓	Help ✓	Institutional Sigr	n In	
				Institution	nal Sign In			
	All		•				۹	
							ADVANCED SEAR	CH
Conferences > 2	2019 Workshop	on Recent Adva	an 😧					
				ensor based	d on ultra	sensitive		
photonic								
Publisher: IE		ite This	Cite This	🕒 PDF				
Anup M. Upadh	yaya ; Manee	esh C. Srivast	ava; Preeta Shai	ran; Yashaswini P.R	.; Srikanth P.C.	All Authors		
					4	Export to	More Like This	5
22 Full Text Views					C	Collabratec Alerts	Design and Modelir Sensor Using Silico	ng of a Nanomechanical on Photonic Crystals
						Manage Content Alerts	Journal of Lightway Published: 2008	
						Add to Citation	Monolithic silicon pl tip sensor	hotonic crystal slab fiber
						Alerts	2009 IEEE/LEOS Ir on Optical MEMS a Published: 2009	nternational Conference nd Nanophotonics
Abstrac	t							Show More
Document Se	ctions PDF							
I. Introduction								
II. LITREATUF REVIEW	RE wit		nic crystal configu	photonic crystal silic uration in line defect		-		
III. DESIGN PRINCIPLE		/letadata	e					
METHODO	DLOGY Ab	stract:	l work photonic c	rystal silicon slab ty	vne structure is a	analyzed with two		
III. Result and discussion	pho	otonic crysta	l configuration in	line defect with mic	cro cavity in wate	er and air medium for		
IV. Conclusion	Uscussion monitoring strain sensing capacities of sensing layer. Pressure is applied and IV. Conclusion temperature of fluid such as air and water is increased from 21 ° C to 31 ° C. From the result it is observed that sensing structure shown better sensing capability in air							
Authors	cor	mpare to wat	er. Maximum sei		RIU is obtained w	vith Q factor of 2356		
Figures	api		iomedical system					
Reference	es Pu	blished in: 2	2019 Workshop o	on Recent Advance	s in Photonics (V	WRAP)		
Keyword	ls Da	te of Confer	ence: 13-14 Dec	c. 2019 INSPE	C Accession N	u mber: 19446556		
Metrics	Da 202		IEEE Xplore: 2	7 February DOI: 10	0.1109/WRAP47	485.2019.9013699		
	20.			Publis	her: IEEE			

ISBN Information: Electronic ISBN:978-1-7281-4749-9 Conference Location: Guwahati, India

Print on Demand(PoD) ISBN:978-1-7281-4750-5

Contents

I. Introduction

Due to growing demand of sensing application in healthcare, security and structural health monitoring, opto mechanical sensors are showing more enhancement towards increasing sensitivity. Since electronic components are most of the time affected by electromagnetic interference in harsh environments sensibility will automatically decreases. Due to properties like insensitivity to EMI and micron level and less circuitry parts involved in optical sensor system, it has been widely used in application for monitoring stress, deformation, temperature, biomolecule detection and many other health care and structural health monitoring applications. Photonic crystal sensor is having significant role in urodynamic and cardiovascular assessment. Better guiding of light wave is made possible by periodic arrangement of micro pillars in photonic crystal pillar configuration or micro holes in hole in silicon slab configurations. Photonic crystal sensor is highly sensitive for its alteration in its per&idic iarter Gentiente Retaisingay slight change in arrangement of crystal brings out the sharp shift in resonant peak wavelength. It has been observed from the literature of opto mechanical sensor based photonic crystal that application of pressure on sensing layer will deflect the position of holes or rods in longitudinal or lateral direction. Change in shape or position of the photonic crystal structure brings out the shift in wavelength. So propagation of light wave in the photonic crystal structure will be altered by many construction parameters like filling ratio such as radius of rod, lattice parameter thickness of perfectly matching layer, intensity of light wave etc. Structural parameters like change in position of holes or pillar, shape of the sensing layer, stiffness of the sensing layer plays major role in deciding the life time of sensor and it has been less explored. Since the sensitivity of any sensing layer is depends on these properties it is very much essential to analyses above factors for various application.

Authors	~
Figures	~
References	~
Keywords	~
Metrics	~

IEEE Personal Account

Purchase Details

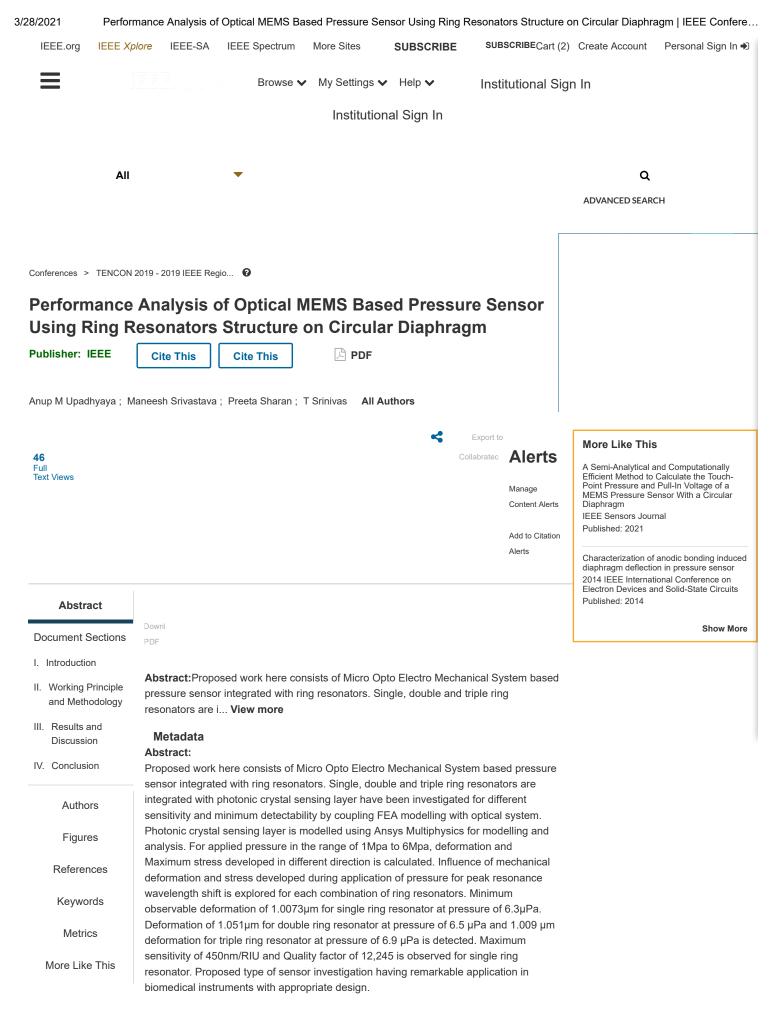
Profile Information

Need Help?

US & CANADA: +1 800 678 4333

WORLDWIDE: +1 732 981 0060

CONTACT & SUPPORT


Follow

f in ¥

CHANGE USERNAME/PASSWORD

PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS

COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS

3/28/2021

Performance Analysis of Optical MEMS Based Pressure Sensor Using Ring Resonators Structure on Circular Diaphragm | IEEE Confere...

Published in: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)

Date of Conference: 17-20 Oct. 2019 INSPEC Accession Number: 19250372

Date Added to IEEE *Xplore*: 12 December DOI: 10.1109/TENCON.2019.8929302 2019

Publisher: IEEE

ISBN Information: Electronic ISBN:978-1-7281-1895-6 Print on Demand(PoD) ISBN:978-1-7281-1896-3 Conference Location: Kochi, India

ISSN Information:

Contents

I. Introduction

By Using the Micro Electro Mechanical System Technology with optical component many different types of sensors are projected to the scientific community as well as to people. Foremost important of using optical component along with MEMS is insensitive to electromagnetic interference. Machzendher Interferometer, Fabry perot pressure sensors are the main techniques came up to the practical scenario [1]. MEMS micro sensors built in the past decades having ability to sense the different physical and chemical properties. MEMS based sensor applicable in sensing pressure, temperature, force etc. combination of optical components and mechanical system expected to give good sensitivity, better detection ranges. It is well established concept that microelectronics is furthermost significant technology in this era. Successful of Miro Electromechanical System in engineering industries is mainly because of evolutionary steps took towards the microelectronics. Components under micro system and microelectronics are different. Micro system involves silicon crystals, Gallium Arsenide, Polymers and Quartz, Missignelierctcocficostimures Readinitigcon crystal and polymers. Assembly of microsystem involves many components compared to microelectronics. Micro electro mechanical system based sensor are giving more sophisticated sensing capabilities mainly because of miniatures in size, lighter with less inertia[2]. Due to its miniature size, optical MEMS or MEMS system having ability in exposure to vibration and distortion. In addition to accurate performance of optical MEMS system their miniature size makes it suitable in many biomedical instruments in invasive or non-invasive way. Miniature of optical MEMS may can also shrink size, weight, power and cost. Integration of optical system in MEMS made it applicable in many applications like micro mirrors, adaptive display, optical fibre sensors and in biomedical science. Measurement principal of optical MEMS system involves nano mechanical system coupled to micro nano mechanical devices, where motion of micro mechanical devices measured in micro scale. With the help of local optomechanical interaction precision motion readout is made possible.

Authors	~
Figures	~
References	~
Keywords	~

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi.

Approved by A.I.C.T.E. New Delhi.

Recognised by UGC Under Section 2(f)

Bommanahalli, Hosur Road, Bangalore - 560 068.

Ph: 080-61754601/602, Fax: 080 - 25730551

E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

S1.NO	Name of the teacher	Title of the book/chapters published	Title of the paper	Title of the proceedings of the conference	Year of publication	ISBN/ISSN number of the proceeding	Department Name	Name of the publisher	Weblink
1	Afzal Shaikh; Preeta Sharan; Manju Devi	-	Power Analysis of Photonic Sensor for Detection of E-coli in Water	2019 Workshop on Recent Advances in Photonics (WRAP)	2019	978-1-7281-4749-9	ECE	IEEE Explorer	https://ieeexplore.ieee.org/document/9013691
2	Indira Bahaddur; M.R. Tejaswini; Santhosh Kumar T.C.; Preeta Sharan; P. C. Srikanth	-	2D Photonic Crystal Cantilever Resonator Pressure Sensor	2019 Workshop on Recent Advances in Photonics (WRAP)	2019	978-1-7281-4749-9	ECE	IEEE Explorer	https://ieeexplore.ieee.org/document/9013843
3	Patil H.J., Indumathi T.S., Sharan P., Nandi S	-	Interpretation of Photonic Crystals with Hexagonal Symmetry	International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing	2019	978-3-030-22262-8	ECE	IEEE Explorer	https://www.semanticscholar.org/paper/Interpretation-of- Photonic-Crystals-with-Hexagonal-Patil- Indumathi/631aceb0624f4eb4ca34adca2868bc148646e87e
4	Anup M. Upadhyaya; Maneesh C. Srivastava; Preeta Sharan; Yashaswini P.R.Srikanth P.C	-	Micro mechanical deformation sensor based on ultra- sensitive photonic crystal membrane	2019 Workshop on Recent Advances in Photonics (WRAP)	2019	978-1-7281-4749-9	MECHANICAL	IEEE Explorer	https://ieeexplore.ieee.org/document/9013699

			Later 1974	2	THE O ised by the Gov	ILDREN'S EDUCATIO XFORD COLLEGE t. of Karnataka, Affiliated to Vis Approved by A.I.C.T Recognised by UGC U Bommanahalli, Hosur Road Ph: 080-61754601/602, F engprincipal@theoxford.edu	OF ENGINE wesvaraya Technolog E. New Delhi. nder Section 2(f) , Bangalore - 560 0 ax: 080 - 25730551	ERING jical University, B	elagavi.
5	Anup M Upadhyaya; Maneesh Srivastava; Preeta Sharan; T Srinivas	A C N F F S S F F S S C	Performance Analysis of Optical MEMS Based Pressure Sensor Using Ring Resonators Structure on Circular Diaphragm	TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)	2019	978-1-7281-1895-6	MECHANICAL	IEEE Explorer	http://eprints.iisc.ac.in/64448/

SI.NO	Name of the teacher	Title of the book/chapter s published	(Re virginity) t 1974 Title of the paper	THE C ecognised by the Gov	XFORD CO rt. of Karnataka, Af Approve Recognised Bommanahalli, Ph: 080-6175	DUCATION SO DLLEGE OF filiated to Visvesva d by A.I.C.T.E. Ne by UGC Under S Hosur Road, Bang 4601/602, Fax: 08 oxford.edu Web: National / International	ENGIN raya Techn w Delhi. Section 2(1 jalore - 50 0 - 25730	NEERING ological University, Belagavi. ⁷⁾ 50 068. 9551	Affiliating Institute at the time of publication	Name of the publisher
1	Dr.Preeta Sharan		Nonlinear Response of Fiber Bragg Grating for Health Monitoring of Railway Track		INDIACOM	International	2020	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE
2	V. L. Nandhini, K. Suresh BabuSandip Kumar RoyPreeta Sharan	Multichannel Biosensor for Skin Type Analysis					2020	978-981-15-5242-7	The Oxford College of Engineering, Bangalore	Algorithms for Intelligent Systems, Springer
3	Harshada J. Patil; D S Raksha; Rohit Dattatraya Hegde; V R Ashwini; T S Indumathi; Preeta Sharan		Design and Analysis of Optical Sensor for Detection of Cancer Biomarkers	2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)	IEEE CONNECT	International	2020	978-1-7281-6828-9	The Oxford College of Engineering, Bangalore	IEEE Explorer
4	Kishan Shetty; Kiran Saravana; M K Vikas Vinugna; Brinda N Murthy; Seema Patil; Preeta Sharan		Quantum Dot Cellular Automata Based RBG to Gray Scale Conversion in Bio- Medical Applications	2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2020	International	2020	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE Explorer

CHILDREN'S EDUCATION SOCIETY (Regd.)

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi.

Approved by A.I.C.T.E. New Delhi. Recognised by UGC Under Section 2(f) Bommanahalli, Hosur Road, Bangalore - 560 068. Ph: 080-61754601/602, Fax: 080 - 25730551

E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

5	Sumita Mishra; Aditya Prakash; Sandin Kumar Roy; Preeta Sharan; Nidhi Mathur		Breast Cancer Detection using Thermal Images and Deep Learning	2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2020	International	2020	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE Explorer
6	Sumeet Kulkarni; Nusra thulla Khan; Preeta Sharan; B Ranjith		Bacterial Analysis of Drinking Water using Photonic Crystal based Optical Sensor	2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)	INDIACOM 2020	International	2020	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE Explorer
7	Suchandana Mishra ; Preeta Sharan ; Sushma P Kamath ; Saara K		Monitoring of Rail Wheel Impact for Various Train Speeds	2021 7th International Conference on Computing for Sustainable Global Development (INDIACom)	2021 7th International Conference on Computing for Sustainable Global Development (INDIACom)	International	2021	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE Explorer
8	Amita Asthana ; Anil Kumar ; Sumita Mishra ; Preeta Sharan ; Mohammed Tabrez		Design of Single Bit Low Power Multiply Accumulate (MAC) Unit Using Quantum Dot Cellular Automata	2021 7th International Conference on Computing for Sustainable Global Development (INDIACom)	2021 7th International Conference on Computing for Sustainable Global Development (INDIACom)	International	2021	978-93-80544-38-0	The Oxford College of Engineering, Bangalore	IEEE Explorer
9	Preeta Sharan, Manpreet Singh Manna and Inderpreet Kaur	Smart Monitoring of Flat Wheel in Railway Using Optical Sensors					2021	10.5772/intechopen.97847	The Oxford College of Engineering, Bangalore	Intech Open

What is Open Access?

Open Access is an initiative that aims to make scientific research freely available to all. To date our community has made over 100 million downloads. It's based on principles of collaboration, unobstructed discovery, and, most importantly, scientific progression. As PhD students, we found it difficult to access the research we needed, so we decided to create a new Open Access publisher that levels the playing field for scientists across the world. How? By making research easy to access, and puts the academic needs of the researchers before the business interests of publishers.

Smart Monitoring of Flat Wheel in Railway Using Optical Sensors | IntechOpen

Our authors and editors

We are a community of more than 103,000 authors and editors from 3,291 institutions spanning 160 countries, including Nobel Prize winners and some of the world's mostcited researchers. Publishing on IntechOpen allows authors to earn citations and find new collaborators, meaning more people see your work not only from your own field of study, but from other related fields too.

Content Alerts

Brief introduction to this section that descibes Open Access especially from an IntechOpen perspective

How it worksManage preferences

Contact

Want to get in touch? Contact our London head office or media team here

Careers

Our team is growing all the time, so we're always on the lookout for smart people who want to help us reshape the world of scientific publishing.

Open access peer-reviewed chapter - ONLINE FIRST Smart Monitoring of Flat Wheel in Railway Using Optical Sensors By Preeta Sharan, Manpreet Singh Manna and Inderpreet Kaur

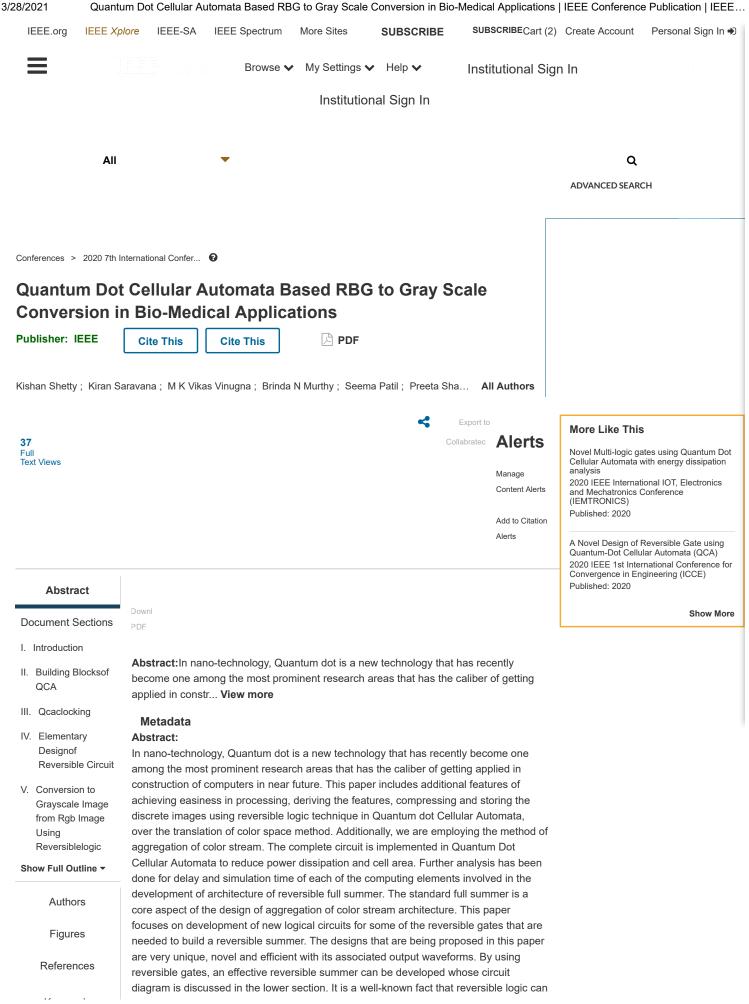
Submitted: February 8th 2021 Reviewed: April 22nd 2021 Published: May 28th 2021

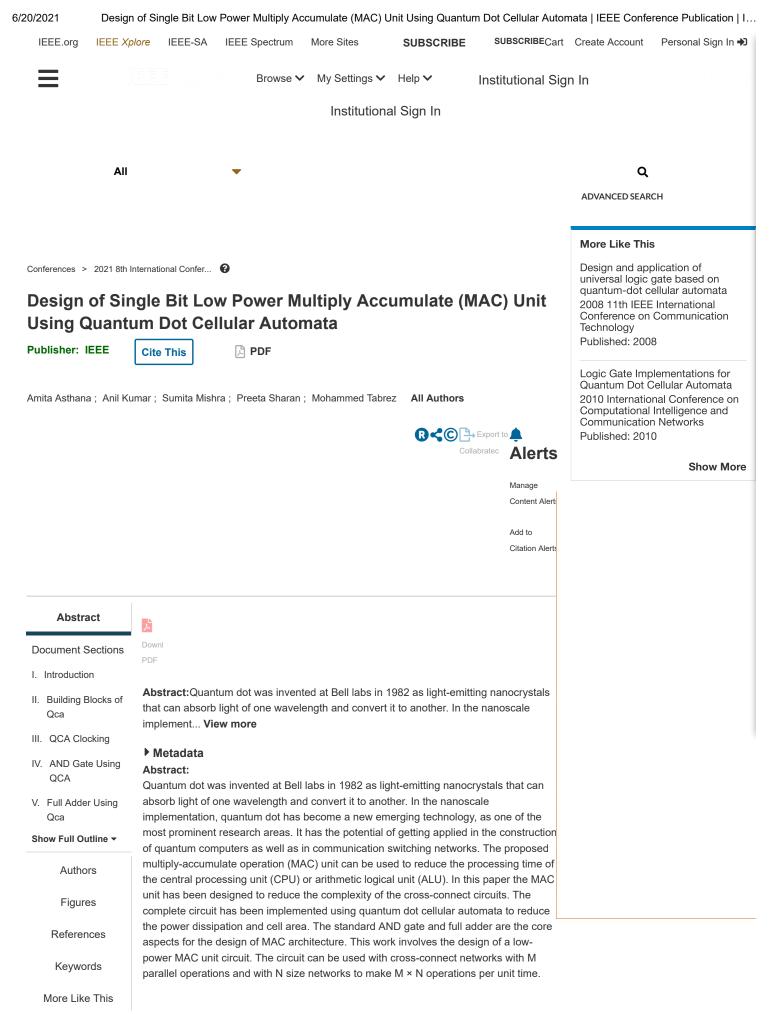
DOI: 10.5772/intechopen.97847

Home > Books > Smart Metering Technology [Working Title]

ADVERTISEMENT

Downloaded: 17


Sections


SHARE THIS CHAPTER

Abstract

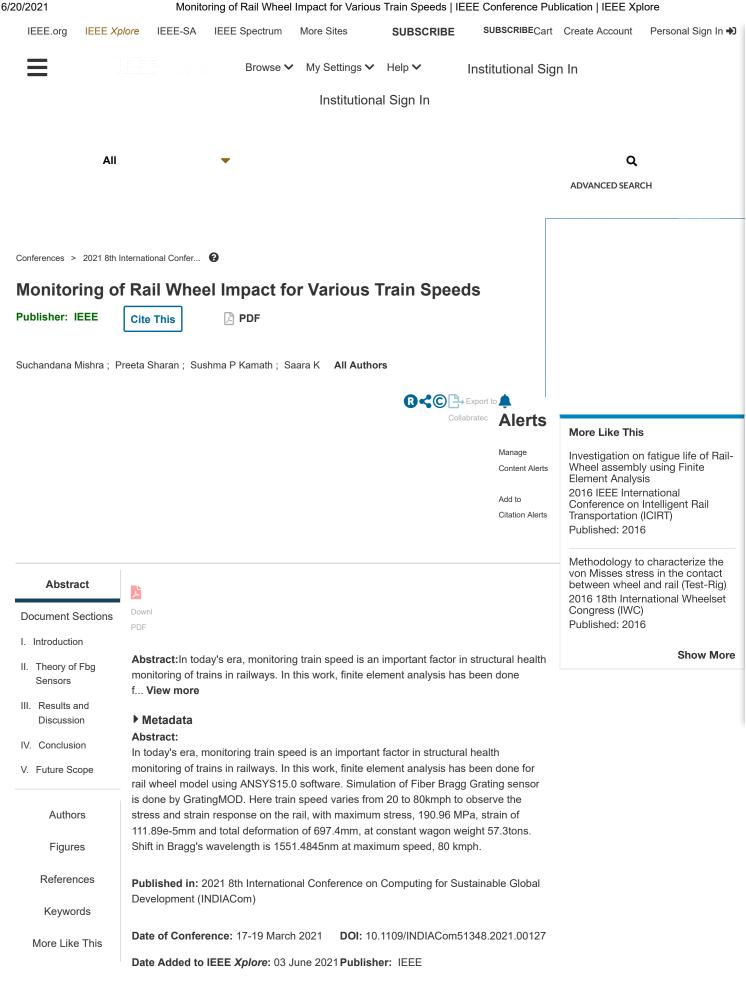
The need for improved safety, reliability and efficiency is one of the most important aspects of the railway industry worldwide. Optical sensors can be used in smart condition monitoring system that can allow real time and continuous monitoring of the structural and operational conditions of trains. Railway monitoring is carried by the use of Fiber Bragg Grating sensors which measures strain, vibration, temperature, acceleration in continuous manner. This chapter covers

>

Multichannel Biosensor for Skin Type Analysis

Advances in Machine Learning and Computational Intelligence pp 611-619 | Cite as

- V. L. Nandhini (1) Email author (sunandi7276@gmail.com)
- K. Suresh Babu (2)
- Sandip Kumar Roy (3)
- Preeta Sharan (4)
- 1. Department of ECE, Govt. SKSJTI, , Bangalore, India
- 2. Department of ECE, UVCE, , Bangalore, India
- 3. Department of ECE, AMC Engineering College, , Bangalore, India
- 4. Department of ECE, The Oxford College of Engineering, , Bangalore, India


Conference paper First Online: 26 July 2020

- <u>1 Citations</u>
- 396 Downloads

Part of the Algorithms for Intelligent Systems book series (AIS)

Abstract

Skin cancer is the uncontrolled growth of abnormal skin cells, and it may occur due to unrepaired DNA damage to skin cells; some of the common types are squamous cell carcinoma, basal cell carcinoma, melanoma. Squamous cell carcinoma is a type of cancer caused by an uncontrolled growth of abnormal squamous cells. Basal cells produce new skin cells as old ones die. Limiting sun exposure can help prevent these cells from becoming cancerous. The first step toward skin cancer detection is to asses skin type. Photonic crystal (PhC) is a periodic optical nanostructure used in the current work as a biosensor. PhC exhibits optical band gaps which are used for super-prisms, negative refraction, and dispersion compensation. We have created a biosensor with three sensing holes or point defects in PhC. The designed biosensor can sense three refractive indices simultaneously. By changing the properties of the sensing hole, the wavelength shifts and new resonant wavelength can be observed. Using a square lattice structure, we can distinguish between various sensing levels concerning amplitude and different wavelength values for all the three types of skin, namely Asian, Dark, and Caucasian skins. When the nano-sensing hole size is 0.22 um, the result shows a distinctly separable wavelength shift. When the sensing hole size decreases, then we cannot distinguish between Dark and Asian skin as the content of the melanin pigment present is more. We could conclude from the simulation that the designed biosensor can be used as a multichannel biosensor for skin type analysis.

Conference Location: New Delhi, India

3/28/2021	De	esign and Ar	nalysis of Optical \$	Sensor for Detectio	on of Cancer Bio	markers IEEE Confere	nce Publication	IEEE Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🎝
≡			Browse	✓ My Settings ✓	Help 🗸	Institutional Sigr	ı In	
				Institution	al Sign In			
	All		•				۵	
							ADVANCED SEAR	СН
Conferences > 2	2020 IEEE Interr	national Confe	. 0					
Design a Biomark		lysis of	Optical So	ensor for D	etection o	of Cancer		
Publisher: IE		ite This	Cite This	PDF				
Harshada J. Pa	til;DSRaks	ha; Rohit Da	attatrayaHegde ; 🕔	/ R Ashwini; T S Ind	dumathi; Preeta	S All Authors		
21					<	Export to Collabratec Alerts	More Like This	6
Full Text Views					~	Manage	Label-Free Cancer Optical Sensors IEEE Access	Cells Detection Using
						Content Alerts	Published: 2018	
						Add to Citation Alerts	2-D photonic crysta DNA analysis of bro 2015 International Pervasive Computi	Conference on
							Published: 2015	
Abstrac	Dow	nl						Show More
Document Se	FDF							
I. Introduction	Ab	•		corporates the mod	0	0,		
METHODS TOPOLOGI	AND	tection Vi	•	sensor for breast a	ind cervical cand			
III. RESULT A DISCUSSI		letadata stract:						
IV Conclusion Future Wor	rand pho ^{rk} stro	otonic crysta uctures, regu	l-based sensor fo llar hexagon, and	180° phase misma	al cancer infecte atched hexagon	d cell detection. Two are used. For the		
Authors	ba:	sis and corre	esponding change	s, the change in refr in properties of light sitivity of the design	ht rays is observ	ed. A comparative		
Figures	s wit	h the wavele	ength shift in the tr	ansmitted spectrur	n. The sensitivity	results are observed / is calculated for an hexagonal shape		
Reference	es as	regards to c	ervical cancer det	ection, hexagonal section with re	structure fares b	etter than 180 ⁰		
Keyword	ls					-		
Metrics	.		2020 IEEE Interna n Technologies (C	ational Conference ONECCT)	on Electronics,	Computing and		
More Like		te of Confer	rence: 2-4 July 20	020 INSPE	C Accession Nu	umber: 20015032		

3/28/2021		Breast Car	cer Detection using	Thermal Images	and Deep Lear	ning IEEE Conference	Publication IEE	E Xplore
IEEE.org	IEEE Xplore	e IEEE-SA	IEEE Spectrum	More Sites	SUBSCRIBE	SUBSCRIBECart (2)	Create Account	Personal Sign In 🔿
			Browse 🗸	My Settings 🗸	Help 🗸	Institutional Sigr	ı In	
				Institution	al Sign In			
	All		•				۹	
							ADVANCED SEARC	ЭН
Conferences >	2020 7th Inter	national Confer	0					
Breast C	Cancer	Detectio	n using The	ermal Imag	ges and D	еер		
Learning	9							
Publisher: IE	EE	Cite This	Cite This	PDF				
Sumita Mishra	; Aditya Pra	ıkash ; Sandin I	Kumar Roy; Preeta	Sharan;Nidhi Ma	thur All Autho	ors		
					~	Export to		
1	135				-		More Like This	
Paper Citation	Full Text Views					Managa	Asymmetry analysis detection using ther Proceedings of the	mal infrared images
						Manage Content Alerts	Annual Conference Meeting of the Biom	and the Annual Fall nedical Engineering
						Add to Citation	Society] [Engineerir Biology	ng in Medicine and
						Alerts	Published: 2002	
							An Infrared High cla Hand-held Machine Breast-Cancer Dete	
Abstrac	ct						2019 IEEE Biomedi Systems Conferenc	cal Circuits and
Document Se	actiona	ownl PDF					Published: 2019	Show More
» Nomenclatur								
I. Introduction	1		st cancer is indeed a ection techniques c	•				
II. Breast Can Diagnosis	ncer r	nammogra V	ïew more					
III. Deep Lear	-	Metadata Abstract:						
Model IV. Proposed	Model	detection techn	iques currently avai	ilable for breast c	ancer diagnosis	a. There are several , like mammography,		
Show Full Out	r.	•	ance imaging, ultra s way to enter this f			ed Thermal Imaging aphy. Infrared		
Authors	s r	many years pri	d to be less harmful or to the detection o to use Thermograp	f cancer by mam	mography. The	•		
Figures	s i	nsight on how	to make better pred	ictions for breast	cancer. In this w	vork, the		
Referenc	xes r	model to predic	nd techniques used t breast cancer from montod and classifi	n thermal images	. Thermal image	es are pre-		
Citation	is C	concludes with	mented and classifi the major finding th pased on the output	at 95.8% accurac	cy of prediction i	s achieved for		
Keyword	ds 7	The current app	proach demonstrate	d a significant im	provement over	•		
Metrics			-	5	-			

3/28/2021

3/2021	Breast Cancer Detection using Therma	al Images and Deep Learning IEEE Co	Interence Publication IEE	E Xplore
More Like This	proposed deep convolutional Neural Netwo of breast cancer.	ork model is highly effective in the predic	otion	
	Published in: 2020 7th International Confe Development (INDIACom)	erence on Computing for Sustainable G	lobal	
	Date of Conference: 12-14 March 2020	INSPEC Accession Number: 196296	366	
	Date Added to IEEE Xplore: 13 May 2020	D DOI:		
	ISBN Information:	10.23919/INDIACom49435.2020.9083	3722	
	Electronic ISBN:978-93-80544-38-0	Publisher: IEEE		
	DVD ISBN:978-93-80544-36-6 Print on Demand(PoD) ISBN:978-1-7281-2958-7	Conference Location: New Delhi, Ind	Jia	
	i≣ c			
	Nomenclature Convolutional neural netଭିାହ୍ରRsin to Contin	nue Reading		
	Authors		~	
	Figures		~	
	References		~	
	Citations		~	
	Keywords		<u>~</u>	
	Metrics		~	
			_	
IEEE Personal A	ccount Purchase Details	Profile Information	Need Help?	Follow

CHANGE USERNAME/PASSWORD

Purchase Details PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS Profile Information
COMMUNICATIONS PREFERENCES
PROFESSION AND EDUCATION
TECHNICAL INTERESTS

US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

f in ¥

3/28/2021	Bac	terial Analysis	of Drinking W	ater using Phot	tonic Crystal b	ased Optical Sen	sor IEEE Conf	erence Publication	n IEEE Xplore
IEEE.org	IEEE Xplore	IEEE-SA	IEEE Spectru	um More Site	es SUBS	CRIBE SUE	SSCRIBECart (2)	Create Account	Personal Sign In 🎝
			Brows	se 🗸 My Sett	tings 🗸 Help	✓ Inst	titutional Sigr	ı In	
				Inst	itutional Sig	n In			
	All		•					۵	
								ADVANCED SEARC	Ή
Conferences >	2020 7th Interr	national Confer	0						
	-		rinking V	Vater usi	ng Photo	onic Cryst	al		
based O									
Publisher: IE		Cite This	Cite This	Ľ١	PDF				
Sumeet Kulkar	ni ; Nusrathu	ılla Khan; Pre	eta Sharan; B	Ranjith All A	uthors				
						C Export to	þ	More Like This	
32 Full						Collabratec	Alerts	Finite difference tim	e domain analysis of a
Text Views							Manage Content Alerts	2005 IEEE Antenna Society Internationa Published: 2005	
							Add to Citation		e-domain analysis of
							Alerts	bandgap characteris probed hollow-core 2010 Photonics Glo Published: 2010	photonic crystal fibers
Abstrac	ct								Show More
Document Se	actiona	ownl DF							
I. Introduction		betract ula thi	a nanar daaigi	of an antical a	opor io propo	and which can b	o upod for		
II. Tools and Techniques	d		cteria in contar	•		sed which can b idered a couple c			
III. Proposed of Optical	Sensor	Metadata							
IV. Resultsan Analysis	d Ir		•			a can be used for			
V. Conclusion	6					ple of 2D photon done with the he	-		
Future Sco	u	sing OptiFDTI	D simulation to	ol. Optical prop	perties of differ	g of these structu ent bacteria in wa	ater are		
Authors	-			ex values are g o structures is o		o OptiFDTD. Fin	al response		
Figures	S P	ublished in:	2020 7th Interr	national Confer	ence on Comp	uting for Sustain	able Global		
Reference	D	evelopment (
Keyword	ds D	ate of Confe	rence: 12-14 N	larch 2020	INSPEC Acce	ssion Number:	19629668		
Metrics	S D	ate Added to	IEEE Xplore:	13 May 2020		ACom49435.202	0.9083711		
		ISBN Inform	ation:						

More Like This	DVD Print	ronic ISBN:978-93-80544-38-0 ISBN:978-93-80544-36-6 on Demand(PoD) 978-1-7281-2958-7	Publisher: IEEE Conference Location: New Delhi, In	ndia	
		:= co	ontents		
	signal. light into the vari- is usual specific the gen electror wave. L Maxwel applied is shiftir	duction cal sensor is a device which conver- The main purpose of using optical of an electronic signal and this elec- ous measurements in the human r ly a part of the integrated device, the applications like detection, measu- eral light theory of igmyisids, Ordentime magnetic wave, which obeys the pr Jsing this principle, all the electron I's equations, Schrodinger wave e to study the behavior of light signa- ng from semiconductor device tech opy, due to the lot of advantages a	sensor is to convert incoming ctronic signal can be used for readable format. Optical sensor this device can be used for the arements, controlling etc., From coexided thight is also an roperties of electromagnetic magnetic wave equations like equations etc., can be directly al. Now a days, the technology nnology to optical device		
	Authors		~		
	Figures			~	
	Referen	ces		~	
	Keyword	ds		~	
	Metrics			~	
IEEE Personal A	Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME	PASSWORD PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS		COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT	f in ¥

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

Nonlinear Response of Fiber Bragg Grating for Health Monitoring of Railway Track

Thammaiah N S Deptt.of Mech. Engineering The Oxford College of Engineering Bangalore, INDIA thammaiahns@gmail.com Prajwal P Patil Deptt. of Elect. and Comm. Engg. The Oxford College of Engineering Bangalore, INDIA prajwalpatil12@gmail.com Anup M Upadhyaya Deptt.of Mech. Engineering The Oxford College of Engineering Bangalore, INDIA Research Scholar, Amity University Lucknow, INDIA upadhyayaanup74@gmail.com

Preeta Sharan Deptt.of Elect. and Comm. Engg. The Oxford College of Engineering Bangalore, INDIA sharanpreeta@gmail.com Maneesh C Srivastava Deptt.of Mech. Engineering Amity University Lucknow, INDIA mcsrivastava@lko.amity.edu

Abstract-Automated system for real-time health monitoring system of railway track is a major need in India to ensure the passenger, a safe journey. The Indian railway system is facing breakthrough problems such as wheel flat spot due to wheel set drag, axle misalignment, bogie performance, rail health and many other geometric faults. In the proposed research work, we analyzed the nonlinear response of the rolling wheel on Indian standard 136 RE rail and observed the wavelength and strain variation during the integration of the Fiber Bragg Grating (FBG) sensor in the web and foot of the rail. Finite Element (FE) results and FBG results have shown consistency with the wheel movement. Wavelength shift obtained for each change in strain step size of 0.5 in the foot part of the rail. Displacement of wheel in for true distance covered data assist in finding the faulty wheel. Obtained sensitivity of designed FBG sensor is 450nm/RIU as per the requirement of high loading capacity. Proposed dynamic wheel analysis of rail and wheel is the very important aspects or need in the current scenario of Indian railway system for automating the safety system.

Keywords—Fiber Bragg Grating (FBG); finite element model; nonlinear; rail; wheel.

I. INTRODUCTION

The wheel is one of the most important parts of a vehicle. The wheels of a train usually have a conical geometry with a flange towards the inner side[1]. When the face of the wheel rolls over the track, they transmit the load of the train at the point of contact. The flange of the wheel guides the wheel to traverse on the rail and prevents it from falling off the rails. The flange of the wheel is subjected to lateral forces as both the wheel and rail are made of hardened steel[2].

To control the speed or to stop any vehicle, brakes are applied. When the break force applied on the rotating wheel is more than the proportional load, the train comes to a sudden halt. Hence the wheel slides over the track before coming to rest[3]. This damages the perfectly symmetric shape of the wheel thread and creates flat spots due to friction at the point of contact when the wheel slides over the track. A single rotation of the wheel covers up to 8 feet (2.4 meters) of the track. Thus the wheel makes about 264 hits for every kilometer and in every 4 meters there is a welded joint which is considered to be the weakest section of the track[4]. When the flattened wheel hits the track, it causes heavy shock thereby causing cracks and weld failure at the joints. This poses a serious threat to the operation of railways as crack protrudes internally which leads to major disasters. According to Indian railway standard specifications CMI-K003 standards, some other wheel defects are shattered rim, spread rim, thermal crack, shelled thread and disc crack. These wheel defects if gone unnoticed may lead to accidents and endangers many lives[5]. Hence use of various sensors to measure and monitor the various physical condition of the track will provide an effective solution to these problems[6]. According to a recent survey, the volume of goods transported has increased by 23% in the year 2019 and is expected to increase further in the coming years hence there is a need for better monitoring and maintenance of railway track in India[7].

Fibre Bragg Grating is a section in the core of an optical fibre with periodic variations, FBG core has a very small diameter of 4 to 9 μ m and it also consists of an outer layer called cladding whose diameter ranges from 80 to 125 μ m[8]. Material used to fabricate these sensors are usually silicon whose refractive index is 3.46. Optical FBG sensors are gaining importance because of their sensitivity and versatility.FBG sensors can be used to measure various parameters like strain, temperature, load, acceleration, vibration, inclination, etc.[9]. these kinds of sensors uses the light from the wavelength spectrum to reflect it to higher or lower level to be used as measuring instruments[10-12]. They can be easily installed and are not affected by external

disturbances like electromagnetic interference, lightning, and other external disturbances. FBG sensors are fabricated in tiny optical fibres and the sensing signal can be read at a distance more than 100 km away. They can also monitor points that cannot be accessible by traditional electrical sensors as well. In the proposed work we examined the consistency of fiber Bragg grating sensor results positioned in rail web and rail foot portion with nonlinear FEA analysis by considering time variation[13]. The sensor network is assembled by placing FBG sensors on the railway track for real-time monitoring of track to measure displacement and strain, these variables are monitored by the FBG interrogator to find out the changes in these variables [14-16]. FBG sensor's longer life span, stability, costless and ease of installation makes it more useful than the normal strain gauges. The strain induced in the FBG can be used to find the weight and speed of the train, FBG is advance and cost-effective sensor which can be used to monitor the structure and health of the railway track. Proposed work help solves major problems in real-time Indian railway system monitoring[17-19]. Operational passenger railroad with FBG system is investigated in Hong Kong city. FBG sensor are located in the various region of rail with specific measurement system. Hong Kong was anticipated the ever demanding safety, reliability and efficiency required in railway system and brought out the efficient system FBG integration over railway track[20] [21].

FBG sensors are used in different application of train such as temperature measurement in the wheel rail system, measuring tilt angle, acceleration measurement. FBG system is developed for WIM - Weighing in Motion and Wheel Flat Detection (WFD). TWBCS system is developed for measuring strain for vertical direction force. Frequently rail and wheel engagement during the rotation will reduce the life of wheel and gradually increase the flatness due to unexpected heavy loads, vibrational shock[22]. Detecting the flat wheel is highly challenging the in the incase of railway system, FBG sensing system can make the challenging task easier by its high sensitivity to load and period change can be observed in the grating region. Real time safety monitoring of railway system has been simulated and experimented. Physical quantitates and harmful aspects in the railway system is detected in using this real time sensing detection using optical fibre brag grating technology. This technique is designed and proposed by

II. DESIGN APPROACH AND PRINCIPLE

The dimensions of wheel and rail are obtained from Indian railway standard specifications for wheel and axle assembly for carriages and wagons IRS R-19/93(Part-1). 136 RE rail design is chosen with the wheel.

The section area of the rail, shown in Fig.1, is 86.13 sqmm and its calculated weight is 67.364 K/m. The wheel is designed as per given prescribed dimension of Indian railway, as given in Fig 2.

Based on the given design parameters the 3-D model is designed and assembled using CATIA. The volume mesh of the model is then performed using ANSA. All the physical properties like materials, interactions, boundary conditions, and load were applied and nonlinear analysis was carried out using ANSYS. Material of density 7800 Kg/m3, young modulus of 21e10, and poisons ratio of 0.3 is applied to the model. Contact surface interactions were applied along with suitable boundary conditions. Load steps were created and load of 200 KN was applied on the wheel during the analysis. Fig. 3 shows standard track dimension of Indian railway.

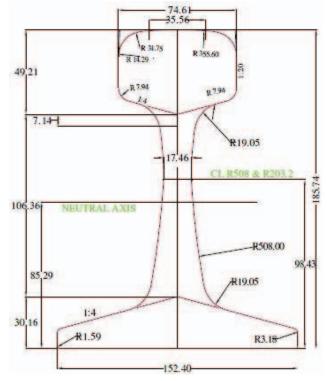


Fig. 1. Design parameters of rail

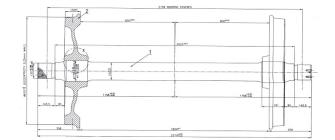


Fig. 2. Design parameters of wheel

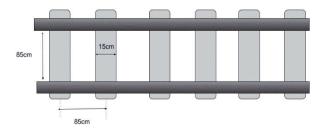


Fig. 3. Standard dimensions of Indian Railway track

7th International Conference on Computing For Sustainable Global Development (INDIACom)

III. MODEL DESCRIPTION

Based on the given design parameters the 3-D model was designed and assembled (Fig. 4 and Fig. 5) using CATIA v5 R20 and the assembled model was meshed using ANSA.

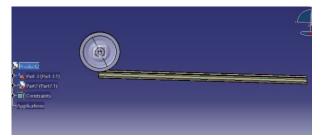


Fig. 4. Design and assembly of model using CATIA v5 R20

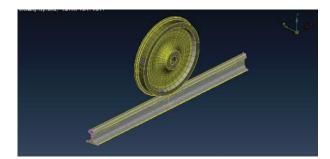


Fig. 5. Model after volume mesh done using ANSA

All the physical properties like materials, interactions, boundary conditions, and load were applied and nonlinear analysis was carried out using ANSYS.

Material of density 7800 Kg/m3, young modulus of 21e10, and poisons ratio of 0.3 was fed to the model. Contact surface. Interactions were applied along with suitable boundary conditions were applied. Load steps were created and load of 200 KN was applied on the wheel. And the result was obtained.

After the fabrication of FBG sensor, the sensor can be placed in the web or the foot region of the track, but because of larger stress concentration in the web region it is more preferable to place the sensor that area. FBG are placed at a distance of 960cm apart. These FBG are interconnected to a fibre optic junction box, it is a device which is used to connect different FBG devices. The system also consists of a FBG interrogator which acts as a measuring device whichallows the FBG output to be used as static and dynamic monitoring as shown in Fig. 6. It represents the layout of the proposed work through which the monitoring can be implemented in the Indian railway system.

IV. RESULT AND DISCUSSION

Fig.7 shows the propagation of stress when the wheel is in motion over the track. Fig. 8 demonstrates the concentration of stress on the rail due to the wheel movement. Changes in the displacement of rail along the specified path of rail are shown in Fig. 9. It is observed from the graph (Fig. 9) that for 0.5 increments of distance on rail their sharp dip indicates the wheel load on a specific position of rail. Peak strain value is

observed in Fig.10, which indicates the change in dimension during the movement of the wheel on the rail. During the consideration of specific measuring point of rail, there is an increase in strain when the wheel comes in contact with that point and again there is a decrease in strain when the specific point overcomes the wheel load. In this way, rail will act like elastic material to withstand the higher load.

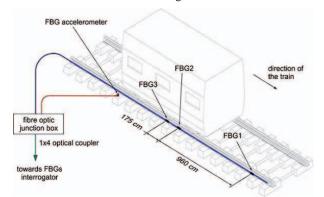


Fig. 6. Placement of FBG sensor in a railway track[8]

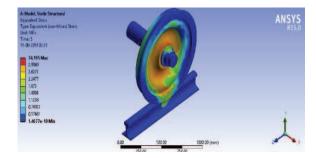


Fig. 7. Propagation of stress from wheel to rail

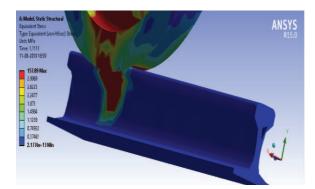


Fig. 8. Stress concentration on the rail due to wheel

The displacement of rail with time variation is shown in Fig. 11. During the movement of the wheel on the rail, there is a consistency of displacement in the rail. When the wheel movement slows down between 0.1 to 0.2 seconds there is a sharp fall in displacement.

Fig.12 shows the FBG results obtained for time variation there is a change in wavelength during the wheel movement. This result is obtained when the FBG sensor is positioned in

the foot portion of the wheel. Fig.13 shows the FBG sensor results obtained when the sensor located in the web portion of the rail. Fig.15 shows the designed FBG sensor in R-Soft and Fig.14 shows the wavelength change for variation of strain values obtained during the fiber Bragg grating analysis. Neutral fiber located in the web portion of rail will make the rail to withstand the fluctuation load. This causes the FBG sensor to present plot with variation in strain value, as shown in Fig.15.

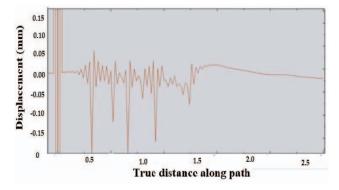


Fig. 9. Displacement of rail due to wheel movement along specified path on 136RE rail

Knowing the displacement of wheel in the path of travelling of wheel is important aspect in nonlinear or dynamic analysis of the rail and wheel. If the wheel is flat mode frequency obtained will be sharp peak. There will be always change in resonance peak frequency for change abrupt change in displacement for flat wheel.

Designed FBG and its nonlinear analysis procedure not only assists in detecting the faulty wheel but also useful in counting the axle of rail during the motion of rail. Fig. 13 is special aspect in the nonlinear analysis of flat wheel aspects. Figure has shown inbuilt design aspect of the rail such increase in the strain in the region of web. High strain value is observed only during the presence of wheel in specific region of rail. Load exerted by wheel on the rail shows high strain the chosen region. Strain gradually decreased in the center of rail. Rail is designed in such a way the it should be able to absorb the heavy vibrational shock during the wheel rotation

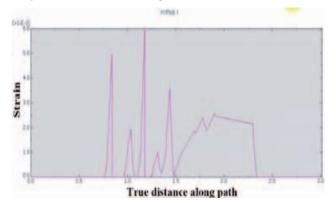


Fig. 10. Strain variation in 136RE rail due to wheel movement along the specified path on rail

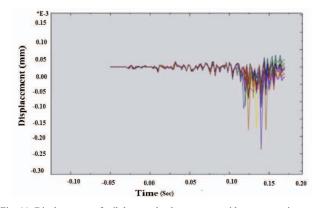


Fig. 11. Displacement of rail due to wheel movement with respect to time

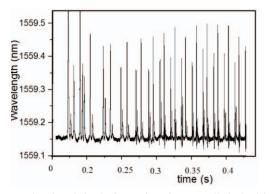


Fig. 12. Wavelength variation in foot region of 136RE rail obtained for FBG sensor integration

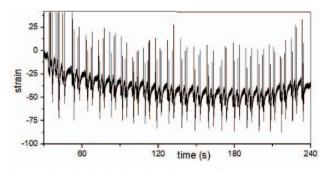


Fig. 13. Strain variation in web region of 136 RE rail

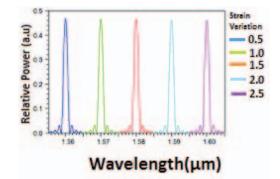


Fig. 14. Relative power variation due to change in wavelength and strain

7th International Conference on Computing For Sustainable Global Development (INDIACom)

FBG sensor designed as simulated for different obtained strain value from nonlinear analysis of wheel and rail. Each obtained value of strain is applied on FBG sensing system. During this design process FBG sensor is optimized for different length and width of core and cladding. Thickness of FBG coating is used is also optimized for each load application of FBG senor. Change in pitch is obtained for each load application on the FBG sensor. There is change in overall refractive index obtained for change is pressure on FBG sensing structure. Gradually change in reflective is observed for change in modulation depth and length of fibre. Length of fibre specified in the work is obtained by iterating the FBG sensing structure for each step increment in length. Application of load on fibre induces strain and changes the period of grating inscribed on the fibre. Reflectivity obtained for specified length is 98.9%. This reflectivity of spectrum obtained indirectly assisted in obtaining the resonance peak wavelength in the transmission spectrum shown in Fig. 14. Sensitivity is obtained by measuring the change in peak wavelength and change in effective refractive index of respective peak wavelength. 450nm/RIU sensitivity value is realistic to withstand and sense the heavy load application especially in case of rail and wheel fault detection system.

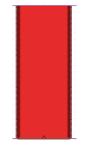


Fig. 15. FBG sensing structure

V. CONCLUSION

The proposed research work consists of nonlinear response and FBG sensing system investigation for health monitoring of Indian railway track. Standard dimension of Indian rail 136 RE and wheel is considered during the analysis. FBG sensor is embedded in the foot and web portion of the rail. Displacement of rail with respect to time for rotation of the wheel on rail is obtained. Change in strain along the specified length of the track is monitored. Strain obtained from the nonlinear analysis of rail and wheel show consistency with strain obtained from the FBG sensor with a shift in wavelength. Position embedded FBG sensor in the foot and web portion of rail has shown a distinct result. Sensor embedded in foot portion has shown a consistent shift in wavelength, but sensor embedded in web region has shown larger strain value at the beginning with gradual decrement and strain values will increase as it reaches the endpoint. This indicates that neutral line within the web portion of rail effectively designed can withstand the highly fluctuating load during the movement of the wheel on the rail. Proposed research work carried out here will be helpful to analyze the problem arising in the railway system due to wheel flat spot and axle counting and many other geometric alignment indications. It can also be helpful in avoiding

accidents and mishaps. Hence makes transportation by train much safer.

ACKNOWLEDGMENTS

The author wishes to thank all the students along with the faculties who assisted in getting real-time data and suggesting ideas for accomplishing the research work. And we would like to thank our university for their constant help and support during the execution of this work in the lab.

REFERENCES

- R. U. A. Uzzal, W. Ahmed, and S. Rakheja, "Dyanamic analysis of railway vehicle-track interactions due to wheel flat with a pitch plane vehicle model," Journal of Mechanical Engineering, vol. 39, no. 2, pp. 86-94, 2008.
- [2] A. Guemes and T. B. Messervey, "Smart textile and polymer fibre for structural health monitoring," in *Textiles, Polymers and Composites for Buildings*, Woodhead Publishing, 2010, pp. 330-350.
- [3] C. E. Campanella, A. Cuccovillo, C. Campanella, A. Yurt, and V. Passaro, "Fibre Bragg grating based strain sensors: review of technology and applications," *Sensors*, vol. 18, no. 9, 2018.
- [4] M. L. Filograno, P. Corredera, M. Rodriguez-Plaza, A. Andres-Alguacil, and M. Gonzalez-Herraez, "Wheel flat detection in high-speed railway systems using fiber Bragg gratings," *IEEE Sensors Journal*, vol. 13, no. 12, pp. 4808-4816, 2013.
- [5] S. J. Buggy, S. W. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, "Railway track component condition monitoring using optical fibre Bragg grating sensors," *Measurement Science and Technology*, vol. 27, no. 5, 2016.
- [6] S. Hussaini, B. Indraratna, and J. Vinod, "Application of Optical-Fiber Bragg Grating Sensors in Monitoring the Rail Track Deformations," *Geotechnical Testing Journal*, vol. 38, no. 4, pp. 387-396, 2015.
- [7] Y. Zhang, F. Liu, Y. Jing, and W. Li, "Application of FBG sensing technique for monitoring and early warning system of high-speed railway track conditions," in *Proc. of the IEEE 25th International Conference on Optical Fiber Sensors, 23 April 2017*, pp. 1-4.
- [8] A. Milojević, M. Tomić, and N. T. Pavlović, "Application of FBG sensors in smart railway," in Proc. of thr XV International Scientific-Expert Conference on Railways, RAILCON'12, 2012.
- [9] F. Mennella, A. Laudati, M. Esposito, A. Cusano, A. Cutolo, M. Giordano, S. Campopiano, and G. Breglio, "Railway monitoring and train tracking by fiber Bragg grating sensors," in Proc. of the Third European Workshop on Optical Fibre Sensors, 2 July 2007, vol. 6619.
- [10] H. Naderi and A. Mirabadi, "Railway track condition monitoring using FBG and FPI fiber optic sensors," in Proc. of the IET International Conference on Railway Condition Monitoring, 2006, pp. 198-203.
- [11] G. Laffont, N. Roussel, S. Rougeault, J. Boussoir, L. Maurin, and P. Ferdinand, "Innovative FBG sensing techniques for the railway industry: application to overhead contact line monitoring," in Proc of the 20th International Conference on Optical Fibre Sensors, 5 October 2009.
- [12] C. Wei, Q. Xin, W. H. Chung, S. Y. Liu, H. Y. Tam, and S. L. Ho, "Real-time train wheel condition monitoring by fiber Bragg grating sensors," *International Journal of Distributed Sensor Networks*, vol. 8, no. 1, 2011.
- [13] B. Liang, S. D. Iwnicki, Y. Zhao, and D. Crosbee, "Railway wheel-flat and rail surface defect modelling and analysis by time-frequency techniques," *International Journal of Vehicle Mechanics and Mobility*, vol. 51, no. 9, pp. 1403-1421, 2013.
- [14] B. Jagadeep, P. K. Kumar, and K. V. Subbaiah, "Stress Analysis on Rail Wheel Contact," *International Journal of Research in Engineering, Science and Management*, vol. 1, no. 5, pp. 47-52, 2018.
- [15] G. Kouroussis, D. Kinet, E. Mendoza, J. Dupuy, V. Moeyaert, and C. Caucheteur, "Edge-filter technique and dominant frequency analysis for

high-speed railway monitoring with fiber bragg grating," *Smart Materials and Structures*, vol. 25, no. 7, 2016.

- [16] F. Yang, D. He, T. Wang, and Y. Wang, "The real-time safety monitoring of railway condition by FBG sensor," in *Proc. of the IEEE* 9th International Conference on Electronic Measurement & Instruments, August, 2009.
- [17] K. Vinnarasi and S. Sundaravadivelu, "Strain Measurement Using Fiber Bragg Granting Sensor for Crack Detection," *International Journal of Advanced Engineering Research and Science*, vol. 4, no. 3, pp. 219-223, 2017.
- [18] W. Zhaoxia, Y. Dongmei, L. Zhiquan, "Bridge structure monitoring system based on practical FBG," in *Proc. of the IEEE International Conference on Automation and Logistics, September, 2008*, pp. 2714-2717.
- [19] V. Shekar, S. H. Petro, and H. V. GangaRao, "Fiber-reinforced polymer composite bridges in West Virginia," *Transportation Research Record*, vol. 1819, no. 1, pp. 378-384, 2003.
- [20] A. Kerrouche, J. Leighton, W. Boyle, Y. M. Gebremichael, T. Sun, K. T. Grattan, and B. Taljsten, "Strain Measurement on a Rail Bridge Loaded to Failure Using a Fiber Bragg Grating-Based Distributed Sensor System," *IEEE Sensors Journal*, vol. 8, no. 12, pp. 2059-2065, 2008.
- [21] R. F. Wright, P. Lu, J. Devkota, F. Lu, M. Ziomek-Moroz, and P. R. Ohodnicki, "Corrosion Sensors for Structural Health Monitoring of Oil and Natural Gas Infrastructure: A Review," *Sensors*, vol. 19, no. 18, 2019.
- [22] R. Chen, W. Liu, G. Huang, D. Wang, X. Qin, and W. Feng, "Hydrogen sulfide sensor based on tapered fiber sandwiched between two molybdenum disulfide/citric acid composite membrane coated longperiod fiber gratings," *Applied Optics*, vol. 57, no. 33, pp. 9755-9759, 2018.

		िक्टा नवंत शॉर हिस्टा नवंत शॉर		THE OXFOR d by the Govt. of Karna A Reco Bommar Ph: 00	D COLLE taka, Affiliated opproved by 20 panised by 00 hahalli, Hosur 80-61754601/6	TION SOCIETY (Regd. CGE OF ENGINEER to Visvesvaraya Technologica A.I.C.T.E. New Delhi. GC Under Section 2(f) Road, Bangalore - 560 068 02, Fax: 080 - 25730551 Ledu Web: www.theoxforder	UNG Il University, Belagav ngg.org		
Sl.No	Name of the teacher	Title of the book/chapters published	Title of the paper	Title of the proceedings of the conference	Year of publicatio n	ISBN/ISSN number of the proceeding	Department Name	Name of the publisher	Weblink
1	Dr. Preeta Sharan		Nonlinear Response of Fiber Bragg Grating for Health Monitoring of Railway Track	INDIACOM 2020	2020	978-93-80544-38-0	ECE	IEEE	https://ieeexp lore.ieee.org/ document/90 83699
2	V. L. Nandhini, K. Suresh BabuSandip Kumar RoyPreeta Sharan		Multichannel Biosensor for Skin Type Analysis	2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)	2020	978-981-15-5242-7	ECE	Algorithms for Intelligent Systems, Springer	https://www.r esearchgate.n et/publication /343223308_ Multichannel _Biosensor_f or_Skin_Typ e_Analysis
3	Harshada J. Patil; D S Raksha; Rohit Dattatraya Hegde; V R Ashwini; T S Indumathi; Preeta Sharan		Design and Analysis of Optical Sensor for Detection of Cancer Biomarkers	2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)	2020	978-1-7281-6828-9	ECE	IEEE Explorer	https://ieeexp lore.ieee.org/ document/91 98421
4	Kishan Shetty; Kiran Saravana; M K Vikas Vinugna; Brinda N Murthy; Seema Patil; Preeta Sharan		Quantum Dot Cellular Automata Based RBG to Gray Scale Conversion in Bio-Medical Applications	2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)	2020	978-93-80544-38-0	ECE	IEEE Explorer	https://ieeexp lore.ieee.org/ abstract/docu ment/908370 2

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

CHILDREN'S EDUCATION SOCIETY (Regd.) THE OXFORD COLLEGE OF ENGINEERING

(Recognised by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi.

Approved by A.I.C.T.E. New Delhi.

Recognised by UGC Under Section 2(f)

Bommanahalli, Hosur Road, Bangalore - 560 068.

Ph: 080-61754601/602, Fax: 080 - 25730551

Estel. 1974 E

-mail:	engprincip	al@theoxford	.edu Web:	www.theoxfordeng	gg.org
0.7th		2020	978-93-8	0544-38-0	FCF

5	Sumita		Breast Cancer	2020 7th	2020	978-93-80544-38-0	ECE	IEEE	https://ieeexp
	Mishra; Aditya		Detection	International				Explorer	lore.ieee.org/
	Prakash; Sandin		using Thermal	Conference on				1	abstract/docu
	Kumar		Images and	Computing for					ment/908372
	Roy; Preeta		Deep	Sustainable Global					2
	Sharan; Nidhi		Learning	Development					
	Mathur		C C	(INDIACom)					
6	Sumeet		Bacterial	2020 7th	2020	978-93-80544-38-0	ECE	IEEE	https://ieeexp
	Kulkarni; Nusrat		Analysis of	International				Explorer	lore.ieee.org/
	hulla		Drinking	Conference on				•	abstract/docu
	Khan; Preeta		Water using	Computing for					ment/908371
	Sharan; B		Photonic	Sustainable Global					1
	Ranjith		Crystal based	Development					
			Optical Sensor	(INDIACom)					
7	Suchandana		Monitoring of	2021 7th	2021	978-93-80544-38-0	ECE	IEEE	https://ieeexp
	Mishra ; Preeta		Rail Wheel	International	-		-	Explorer	lore.ieee.org/
	Sharan ; Sushma		Impact for	Conference on				1	document/94
	P Kamath ; Saara		Various Train	Computing for					41456
	K		Speeds	Sustainable Global					
			1	Development					
				(INDIACom)					
8	Amita Asthana		Design of	2021 7th	2021	978-93-80544-38-0	ECE	IEEE	https://ieeexp
	,Anil Kumar,		Single Bit	International				Explorer	lore.ieee.org/
	Sumita Mishra,		Low Power	Conference on				-	document/94
	Preeta Sharan,		Multiply	Computing for					41289
	Mohammed		Accumulate	Sustainable Global					
	Tabrez		(MAC) Unit	Development					
			Using	(INDIACom)					
			Quantum Dot						
			Cellular						
			Automata						
9	Preeta Sharan,	Smart			2021	10.5772/intechopen.9784	ECE	Intech Open	https://www.i
	Manpreet Singh	Monitoring of				7			ntechopen.co
	Manna and	Flat Wheel in							m/online-
	Inderpreet Kaur	Railway Using							first/76932
		Optical Sensors							
1		_							
			1				1	1	